0.1.dev2184+g1e0cbe7.d20250401
flytekit.types.schema.types
Directory
Classes
Methods
Variables
Property |
Type |
Description |
MESSAGEPACK |
str |
|
T |
TypeVar |
|
Methods
generate_ordered_files()
def generate_ordered_files(
directory: os.PathLike,
n: int,
) -> typing.Generator[str, None, None]
Parameter |
Type |
directory |
os.PathLike |
n |
int |
flytekit.types.schema.types.FlyteSchema
class FlyteSchema(
local_path: typing.Optional[str],
remote_path: typing.Optional[str],
supported_mode: SchemaOpenMode,
downloader: typing.Optional[typing.Callable],
)
Parameter |
Type |
local_path |
typing.Optional[str] |
remote_path |
typing.Optional[str] |
supported_mode |
SchemaOpenMode |
downloader |
typing.Optional[typing.Callable] |
Methods
as_readonly()
column_names()
columns()
deserialize_flyte_schema()
def deserialize_flyte_schema(
args,
kwargs,
)
Parameter |
Type |
args |
*args |
kwargs |
**kwargs |
from_dict()
def from_dict(
d,
dialect,
)
from_json()
def from_json(
data: typing.Union[str, bytes, bytearray],
decoder: collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]],
from_dict_kwargs: typing.Any,
) -> ~T
Parameter |
Type |
data |
typing.Union[str, bytes, bytearray] |
decoder |
collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]] |
from_dict_kwargs |
typing.Any |
open()
def open(
dataframe_fmt: typing.Optional[type],
override_mode: typing.Optional[SchemaOpenMode],
) -> typing.Union[SchemaReader, SchemaWriter]
Returns a reader or writer depending on the mode of the object when created. This mode can be
overridden, but will depend on whether the override can be performed. For example, if the Object was
created in a read-mode a “write mode” override is not allowed.
if the object was created in write-mode, a read is allowed.
Parameter |
Type |
dataframe_fmt |
typing.Optional[type] |
override_mode |
typing.Optional[SchemaOpenMode] |
serialize_flyte_schema()
def serialize_flyte_schema(
args,
kwargs,
)
Parameter |
Type |
args |
*args |
kwargs |
**kwargs |
to_dict()
to_json()
def to_json(
encoder: collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]],
to_dict_kwargs: typing.Any,
) -> typing.Union[str, bytes, bytearray]
Parameter |
Type |
encoder |
collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]] |
to_dict_kwargs |
typing.Any |
Properties
Property |
Type |
Description |
local_path |
|
|
supported_mode |
|
|
Base transformer type that should be implemented for every python native type that can be handled by flytekit
def FlyteSchemaTransformer()
Methods
assert_type()
def assert_type(
t: Type[FlyteSchema],
v: typing.Any,
)
Parameter |
Type |
t |
Type[FlyteSchema] |
v |
typing.Any |
async_to_literal()
def async_to_literal(
ctx: FlyteContext,
python_val: FlyteSchema,
python_type: Type[FlyteSchema],
expected: LiteralType,
) -> Literal
Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these
do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating
what was the mismatch
Parameter |
Type |
ctx |
FlyteContext |
python_val |
FlyteSchema |
python_type |
Type[FlyteSchema] |
expected |
LiteralType |
async_to_python_value()
def async_to_python_value(
ctx: FlyteContext,
lv: Literal,
expected_python_type: Type[FlyteSchema],
) -> FlyteSchema
Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised
Parameter |
Type |
ctx |
FlyteContext |
lv |
Literal |
expected_python_type |
Type[FlyteSchema] |
dict_to_flyte_schema()
def dict_to_flyte_schema(
dict_obj: typing.Dict[str, str],
expected_python_type: Type[FlyteSchema],
) -> FlyteSchema
Parameter |
Type |
dict_obj |
typing.Dict[str, str] |
expected_python_type |
Type[FlyteSchema] |
from_binary_idl()
def from_binary_idl(
binary_idl_object: Binary,
expected_python_type: Type[FlyteSchema],
) -> FlyteSchema
If the input is from flytekit, the Life Cycle will be as follows:
Life Cycle:
binary IDL -> resolved binary -> bytes -> expected Python object
(flytekit customized (propeller processing) (flytekit binary IDL) (flytekit customized
serialization) deserialization)
Example Code:
@dataclass
class DC:
fs: FlyteSchema
@workflow
def wf(dc: DC):
t_fs(dc.fs)
Note:
- The deserialization is the same as put a flyte schema in a dataclass, which will deserialize by the mashumaro’s API.
Related PR:
Parameter |
Type |
binary_idl_object |
Binary |
expected_python_type |
Type[FlyteSchema] |
from_generic_idl()
def from_generic_idl(
generic: Struct,
expected_python_type: Type[FlyteSchema],
) -> FlyteSchema
If the input is from Flyte Console, the Life Cycle will be as follows:
Life Cycle:
json str -> protobuf struct -> resolved protobuf struct -> expected Python object
(console user input) (console output) (propeller) (flytekit customized deserialization)
Example Code:
@dataclass
class DC:
fs: FlyteSchema
@workflow
def wf(dc: DC):
t_fs(dc.fs)
Note:
- The deserialization is the same as put a flyte schema in a dataclass, which will deserialize by the mashumaro’s API.
Related PR:
Parameter |
Type |
generic |
Struct |
expected_python_type |
Type[FlyteSchema] |
get_literal_type()
def get_literal_type(
t: Type[FlyteSchema],
) -> LiteralType
Converts the python type to a Flyte LiteralType
Parameter |
Type |
t |
Type[FlyteSchema] |
guess_python_type()
def guess_python_type(
literal_type: LiteralType,
) -> Type[FlyteSchema]
Converts the Flyte LiteralType to a python object type.
Parameter |
Type |
literal_type |
LiteralType |
isinstance_generic()
def isinstance_generic(
obj,
generic_alias,
)
Parameter |
Type |
obj |
|
generic_alias |
|
to_html()
def to_html(
ctx: FlyteContext,
python_val: T,
expected_python_type: Type[T],
) -> str
Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div
Parameter |
Type |
ctx |
FlyteContext |
python_val |
T |
expected_python_type |
Type[T] |
to_literal()
def to_literal(
ctx: FlyteContext,
python_val: typing.Any,
python_type: Type[T],
expected: LiteralType,
) -> Literal
Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these
do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating
what was the mismatch
Parameter |
Type |
ctx |
FlyteContext |
python_val |
typing.Any |
python_type |
Type[T] |
expected |
LiteralType |
to_python_value()
def to_python_value(
ctx: FlyteContext,
lv: Literal,
expected_python_type: Type[T],
) -> Optional[T]
Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised
Parameter |
Type |
ctx |
FlyteContext |
lv |
Literal |
expected_python_type |
Type[T] |
Properties
Property |
Type |
Description |
is_async |
|
|
name |
|
|
python_type |
|
This returns the python type
|
type_assertions_enabled |
|
Indicates if the transformer wants type assertions to be enabled at the core type engine layer
|
flytekit.types.schema.types.LocalIOSchemaReader
Base SchemaReader to handle any readers (that can manage their own IO or otherwise)
Use the simplified base LocalIOSchemaReader for non distributed dataframes
class LocalIOSchemaReader(
from_path: str,
cols: typing.Optional[typing.Dict[str, type]],
fmt: SchemaFormat,
)
Parameter |
Type |
from_path |
str |
cols |
typing.Optional[typing.Dict[str, type]] |
fmt |
SchemaFormat |
Methods
all()
Parameter |
Type |
kwargs |
**kwargs |
iter()
def iter(
kwargs,
) -> typing.Generator[T, None, None]
Parameter |
Type |
kwargs |
**kwargs |
Properties
Property |
Type |
Description |
column_names |
|
|
from_path |
|
|
flytekit.types.schema.types.LocalIOSchemaWriter
Abstract base class for generic types.
On Python 3.12 and newer, generic classes implicitly inherit from
Generic when they declare a parameter list after the class’s name::
class Mapping[KT, VT]:
def __getitem__(self, key: KT) -> VT:
...
# Etc.
On older versions of Python, however, generic classes have to
explicitly inherit from Generic.
After a class has been declared to be generic, it can then be used as
follows::
def lookup_name[KT, VT](mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
try:
return mapping[key]
except KeyError:
return default
class LocalIOSchemaWriter(
to_local_path: str,
cols: typing.Optional[typing.Dict[str, type]],
fmt: SchemaFormat,
)
Parameter |
Type |
to_local_path |
str |
cols |
typing.Optional[typing.Dict[str, type]] |
fmt |
SchemaFormat |
Methods
write()
def write(
dfs,
kwargs,
)
Parameter |
Type |
dfs |
|
kwargs |
**kwargs |
Properties
Property |
Type |
Description |
column_names |
|
|
to_path |
|
|
flytekit.types.schema.types.SchemaEngine
This is the core Engine that handles all schema sub-systems. All schema types needs to be registered with this
to allow direct support for that type in FlyteSchema.
e.g. of possible supported types are Pandas.DataFrame, Spark.DataFrame, Vaex.DataFrame, etc.
Methods
get_handler()
def get_handler(
t: Type,
) -> SchemaHandler
register_handler()
def register_handler(
h: SchemaHandler,
)
Register a new handler that can create a SchemaReader and SchemaWriter for the expected type.
Parameter |
Type |
h |
SchemaHandler |
flytekit.types.schema.types.SchemaHandler
class SchemaHandler(
name: str,
object_type: Type,
reader: Type[SchemaReader],
writer: Type[SchemaWriter],
handles_remote_io: bool,
)
Parameter |
Type |
name |
str |
object_type |
Type |
reader |
Type[SchemaReader] |
writer |
Type[SchemaWriter] |
handles_remote_io |
bool |
flytekit.types.schema.types.SchemaReader
Base SchemaReader to handle any readers (that can manage their own IO or otherwise)
Use the simplified base LocalIOSchemaReader for non distributed dataframes
class SchemaReader(
from_path: str,
cols: typing.Optional[typing.Dict[str, type]],
fmt: SchemaFormat,
)
Parameter |
Type |
from_path |
str |
cols |
typing.Optional[typing.Dict[str, type]] |
fmt |
SchemaFormat |
Methods
all()
Parameter |
Type |
kwargs |
**kwargs |
iter()
def iter(
kwargs,
) -> typing.Generator[T, None, None]
Parameter |
Type |
kwargs |
**kwargs |
Properties
Property |
Type |
Description |
column_names |
|
|
from_path |
|
|
flytekit.types.schema.types.SchemaWriter
Abstract base class for generic types.
On Python 3.12 and newer, generic classes implicitly inherit from
Generic when they declare a parameter list after the class’s name::
class Mapping[KT, VT]:
def __getitem__(self, key: KT) -> VT:
...
# Etc.
On older versions of Python, however, generic classes have to
explicitly inherit from Generic.
After a class has been declared to be generic, it can then be used as
follows::
def lookup_name[KT, VT](mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
try:
return mapping[key]
except KeyError:
return default
class SchemaWriter(
to_path: str,
cols: typing.Optional[typing.Dict[str, type]],
fmt: SchemaFormat,
)
Parameter |
Type |
to_path |
str |
cols |
typing.Optional[typing.Dict[str, type]] |
fmt |
SchemaFormat |
Methods
write()
def write(
dfs,
kwargs,
)
Parameter |
Type |
dfs |
|
kwargs |
**kwargs |
Properties
Property |
Type |
Description |
column_names |
|
|
to_path |
|
|