0.1.dev2192+g7c539c3.d20250403
flytekit.types.numpy.ndarray
Directory
Classes
Methods
Methods
def extract_metadata(
t: typing.Type[numpy.ndarray],
) -> typing.Tuple[typing.Type[numpy.ndarray], typing.Dict[str, bool]]
Parameter |
Type |
t |
typing.Type[numpy.ndarray] |
TypeTransformer that supports np.ndarray as a native type.
def NumpyArrayTransformer()
Methods
assert_type()
def assert_type(
t: Type[T],
v: T,
)
Parameter |
Type |
t |
Type[T] |
v |
T |
async_to_literal()
def async_to_literal(
ctx: flytekit.core.context_manager.FlyteContext,
python_val: numpy.ndarray,
python_type: typing.Type[numpy.ndarray],
expected: flytekit.models.types.LiteralType,
) -> flytekit.models.literals.Literal
Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these
do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating
what was the mismatch
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
python_val |
numpy.ndarray |
python_type |
typing.Type[numpy.ndarray] |
expected |
flytekit.models.types.LiteralType |
async_to_python_value()
def async_to_python_value(
ctx: flytekit.core.context_manager.FlyteContext,
lv: flytekit.models.literals.Literal,
expected_python_type: typing.Type[numpy.ndarray],
) -> numpy.ndarray
Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
lv |
flytekit.models.literals.Literal |
expected_python_type |
typing.Type[numpy.ndarray] |
from_binary_idl()
def from_binary_idl(
binary_idl_object: Binary,
expected_python_type: Type[T],
) -> Optional[T]
This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.`
For untyped dict, dataclass, and pydantic basemodel:
Life Cycle (Untyped Dict as example):
python val -> msgpack bytes -> binary literal scalar -> msgpack bytes -> python val
(to_literal) (from_binary_idl)
For attribute access:
Life Cycle:
python val -> msgpack bytes -> binary literal scalar -> resolved golang value -> binary literal scalar -> msgpack bytes -> python val
(to_literal) (propeller attribute access) (from_binary_idl)
Parameter |
Type |
binary_idl_object |
Binary |
expected_python_type |
Type[T] |
from_generic_idl()
def from_generic_idl(
generic: Struct,
expected_python_type: Type[T],
) -> Optional[T]
TODO: Support all Flyte Types.
This is for dataclass attribute access from input created from the Flyte Console.
Note:
- This can be removed in the future when the Flyte Console support generate Binary IDL Scalar as input.
Parameter |
Type |
generic |
Struct |
expected_python_type |
Type[T] |
get_literal_type()
def get_literal_type(
t: typing.Type[numpy.ndarray],
) -> flytekit.models.types.LiteralType
Converts the python type to a Flyte LiteralType
Parameter |
Type |
t |
typing.Type[numpy.ndarray] |
guess_python_type()
def guess_python_type(
literal_type: flytekit.models.types.LiteralType,
) -> typing.Type[numpy.ndarray]
Converts the Flyte LiteralType to a python object type.
Parameter |
Type |
literal_type |
flytekit.models.types.LiteralType |
isinstance_generic()
def isinstance_generic(
obj,
generic_alias,
)
Parameter |
Type |
obj |
|
generic_alias |
|
to_html()
def to_html(
ctx: FlyteContext,
python_val: T,
expected_python_type: Type[T],
) -> str
Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div
Parameter |
Type |
ctx |
FlyteContext |
python_val |
T |
expected_python_type |
Type[T] |
to_literal()
def to_literal(
ctx: FlyteContext,
python_val: typing.Any,
python_type: Type[T],
expected: LiteralType,
) -> Literal
Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these
do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating
what was the mismatch
Parameter |
Type |
ctx |
FlyteContext |
python_val |
typing.Any |
python_type |
Type[T] |
expected |
LiteralType |
to_python_value()
def to_python_value(
ctx: FlyteContext,
lv: Literal,
expected_python_type: Type[T],
) -> Optional[T]
Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised
Parameter |
Type |
ctx |
FlyteContext |
lv |
Literal |
expected_python_type |
Type[T] |
Properties
Property |
Type |
Description |
is_async |
|
|
name |
|
|
python_type |
|
This returns the python type
|
type_assertions_enabled |
|
Indicates if the transformer wants type assertions to be enabled at the core type engine layer
|