0.1.dev2184+g1e0cbe7.d20250401

flytekit.core.python_auto_container

Directory

Classes

Class Description
DefaultNotebookTaskResolver This resolved is used when the task is defined in a notebook.
DefaultTaskResolver Please see the notes in the TaskResolverMixin as it describes this default behavior.
PickledEntity Represents the structure of the pickled object stored in the .
PickledEntityMetadata Metadata for a pickled entity containing version information.
PythonAutoContainerTask A Python AutoContainer task should be used as the base for all extensions that want the user’s code to be in the.

Methods

Method Description
get_registerable_container_image() Resolve the image to the real image name that should be used for registration.
update_image_spec_copy_handling() This helper function is where the relationship between fast register and ImageSpec is codified.

Variables

Property Type Description
PICKLE_FILE_PATH str
T TypeVar
default_notebook_task_resolver DefaultNotebookTaskResolver
default_task_resolver DefaultTaskResolver

Methods

get_registerable_container_image()

def get_registerable_container_image(
    img: Optional[Union[str, ImageSpec]],
    cfg: ImageConfig,
) -> n:

Resolve the image to the real image name that should be used for registration.

  1. If img is a ImageSpec, it will be built and the image name will be returned
  2. If img is a placeholder string (e.g. {{.image.default.fqn}}:{{.image.default.version}}), it will be resolved using the cfg and the image name will be returned
Parameter Type
img Optional[Union[str, ImageSpec]]
cfg ImageConfig

update_image_spec_copy_handling()

def update_image_spec_copy_handling(
    image_spec: ImageSpec,
    settings: SerializationSettings,
)

This helper function is where the relationship between fast register and ImageSpec is codified. If fast register is not enabled, then source root is used and then files are copied. See the copy option in ImageSpec for more information.

Currently the relationship is incidental. Because serialization settings are not passed into the image spec build command (and it probably shouldn’t be), the builder has no concept of which files to copy, when, and from where. (or to where but that is hard-coded)

Parameter Type
image_spec ImageSpec
settings SerializationSettings

flytekit.core.python_auto_container.DefaultNotebookTaskResolver

This resolved is used when the task is defined in a notebook. It is used to load the task from the notebook.

class DefaultNotebookTaskResolver(
    args,
    kwargs,
)
Parameter Type
args *args
kwargs **kwargs

Methods

Method Description
find_lhs()
get_all_tasks() Future proof method.
load_task() Given the set of identifier keys, should return one Python Task or raise an error if not found.
loader_args() Return a list of strings that can help identify the parameter Task.
name()
task_name() Overridable function that can optionally return a custom name for a given task.

find_lhs()

def find_lhs()

get_all_tasks()

def get_all_tasks()

Future proof method. Just making it easy to access all tasks (Not required today as we auto register them)

load_task()

def load_task(
    loader_args: List[str],
) -> PythonAutoContainerTask

Given the set of identifier keys, should return one Python Task or raise an error if not found

Parameter Type
loader_args List[str]

loader_args()

def loader_args(
    settings: SerializationSettings,
    task: PythonAutoContainerTask,
) -> List[str]

Return a list of strings that can help identify the parameter Task

Parameter Type
settings SerializationSettings
task PythonAutoContainerTask

name()

def name()

task_name()

def task_name(
    t: flytekit.core.base_task.Task,
) -> typing.Optional[str]

Overridable function that can optionally return a custom name for a given task

Parameter Type
t flytekit.core.base_task.Task

Properties

Property Type Description
instantiated_in
lhs
location

flytekit.core.python_auto_container.DefaultTaskResolver

Please see the notes in the TaskResolverMixin as it describes this default behavior.

class DefaultTaskResolver(
    args,
    kwargs,
)
Parameter Type
args *args
kwargs **kwargs

Methods

Method Description
find_lhs()
get_all_tasks() Future proof method.
load_task() Given the set of identifier keys, should return one Python Task or raise an error if not found.
loader_args() Return a list of strings that can help identify the parameter Task.
name()
task_name() Overridable function that can optionally return a custom name for a given task.

find_lhs()

def find_lhs()

get_all_tasks()

def get_all_tasks()

Future proof method. Just making it easy to access all tasks (Not required today as we auto register them)

load_task()

def load_task(
    loader_args: List[str],
) -> PythonAutoContainerTask

Given the set of identifier keys, should return one Python Task or raise an error if not found

Parameter Type
loader_args List[str]

loader_args()

def loader_args(
    settings: SerializationSettings,
    task: PythonAutoContainerTask,
) -> List[str]

Return a list of strings that can help identify the parameter Task

Parameter Type
settings SerializationSettings
task PythonAutoContainerTask

name()

def name()

task_name()

def task_name(
    t: flytekit.core.base_task.Task,
) -> typing.Optional[str]

Overridable function that can optionally return a custom name for a given task

Parameter Type
t flytekit.core.base_task.Task

Properties

Property Type Description
instantiated_in
lhs
location

flytekit.core.python_auto_container.PickledEntity

Represents the structure of the pickled object stored in the .pkl file for interactive mode.

Attributes: metadata: Metadata about the pickled entities including Python version entities: Dictionary mapping entity names to their PythonAutoContainerTask instances

class PickledEntity(
    metadata: PickledEntityMetadata,
    entities: Dict[str, PythonAutoContainerTask],
)
Parameter Type
metadata PickledEntityMetadata
entities Dict[str, PythonAutoContainerTask]

flytekit.core.python_auto_container.PickledEntityMetadata

Metadata for a pickled entity containing version information.

Attributes: python_version: The Python version string (e.g. “3.12.0”) used to create the pickle

class PickledEntityMetadata(
    python_version: str,
)
Parameter Type
python_version str

flytekit.core.python_auto_container.PythonAutoContainerTask

A Python AutoContainer task should be used as the base for all extensions that want the user’s code to be in the container and the container information to be automatically captured. This base will auto configure the image and image version to be used for all its derivatives.

If you are looking to extend, you might prefer to use PythonFunctionTask or PythonInstanceTask

class PythonAutoContainerTask(
    name: str,
    task_config: T,
    task_type,
    container_image: Optional[Union[str, ImageSpec]],
    requests: Optional[Resources],
    limits: Optional[Resources],
    environment: Optional[Dict[str, str]],
    task_resolver: Optional[TaskResolverMixin],
    secret_requests: Optional[List[Secret]],
    pod_template: Optional[PodTemplate],
    pod_template_name: Optional[str],
    accelerator: Optional[BaseAccelerator],
    shared_memory: Optional[Union[L[True], str]],
    resources: Optional[Resources],
    kwargs,
)
Parameter Type
name str
task_config T
task_type
container_image Optional[Union[str, ImageSpec]]
requests Optional[Resources]
limits Optional[Resources]
environment Optional[Dict[str, str]]
task_resolver Optional[TaskResolverMixin]
secret_requests Optional[List[Secret]]
pod_template Optional[PodTemplate]
pod_template_name Optional[str]
accelerator Optional[BaseAccelerator]
shared_memory Optional[Union[L[True], str]]
resources Optional[Resources]
kwargs **kwargs

Methods

Method Description
compile() Generates a node that encapsulates this task in a workflow definition.
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition.
dispatch_execute() This method translates Flyte’s Type system based input values and invokes the actual call to the executor.
execute() This method will be invoked to execute the task.
find_lhs()
get_command() Returns the command which should be used in the container definition for the serialized version of this task.
get_config() Returns the task config as a serializable dictionary.
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte.
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary.
get_default_command() Returns the default pyflyte-execute command used to run this on hosted Flyte platforms.
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte.
get_image() Update image spec based on fast registration usage, and return string representing the image.
get_input_types() Returns the names and python types as a dictionary for the inputs of this task.
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte.
get_type_for_input_var() Returns the python type for an input variable by name.
get_type_for_output_var() Returns the python type for the specified output variable by name.
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute.
local_execution_mode()
post_execute() Post execute is called after the execution has completed, with the user_params and can be used to clean-up,.
pre_execute() This is the method that will be invoked directly before executing the task method and before all the inputs.
reset_command_fn() Resets the command which should be used in the container definition of this task to the default arguments.
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution.
set_command_fn() By default, the task will run on the Flyte platform using the pyflyte-execute command.
set_resolver() By default, flytekit uses the DefaultTaskResolver to resolve the task.

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
) -> typing.Union[typing.Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise, NoneType]

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
) -> typing.Union[flytekit.models.literals.LiteralMap, flytekit.models.dynamic_job.DynamicJobSpec, typing.Coroutine]

This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.

  • VoidPromise is returned in the case when the task itself declares no outputs.
  • Literal Map is returned when the task returns either one more outputs in the declaration. Individual outputs may be none
  • DynamicJobSpec is returned when a dynamic workflow is executed
Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

execute()

def execute(
    kwargs,
) -> typing.Any

This method will be invoked to execute the task.

Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_command()

def get_command(
    settings: SerializationSettings,
) -> List[str]

Returns the command which should be used in the container definition for the serialized version of this task registered on a hosted Flyte platform.

Parameter Type
settings SerializationSettings

get_config()

def get_config(
    settings: SerializationSettings,
) -> Optional[Dict[str, str]]

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings SerializationSettings

get_container()

def get_container(
    settings: SerializationSettings,
) -> _task_model.Container

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[typing.Dict[str, typing.Any]]

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_default_command()

def get_default_command(
    settings: SerializationSettings,
) -> List[str]

Returns the default pyflyte-execute command used to run this on hosted Flyte platforms.

Parameter Type
settings SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: SerializationSettings,
) -> Optional[tasks_pb2.ExtendedResources]

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_image()

def get_image(
    settings: SerializationSettings,
) -> str

Update image spec based on fast registration usage, and return string representing the image

Parameter Type
settings SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: SerializationSettings,
) -> _task_model.K8sPod

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flytekit.models.task.Sql]

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
) -> typing.Type[typing.Any]

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
) -> typing.Type[typing.Any]

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
) -> typing.Union[typing.Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise, typing.Coroutine, NoneType]

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
    rval: typing.Any,
) -> typing.Any

Post execute is called after the execution has completed, with the user_params and can be used to clean-up, or alter the outputs to match the intended tasks outputs. If not overridden, then this function is a No-op

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]
rval typing.Any

pre_execute()

def pre_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
) -> typing.Optional[flytekit.core.context_manager.ExecutionParameters]

This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called

This should return either the same context of the mutated context

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]

reset_command_fn()

def reset_command_fn()

Resets the command which should be used in the container definition of this task to the default arguments. This is useful when the command line is overridden at serialization time.

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
) -> flytekit.models.literals.LiteralMap

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

set_command_fn()

def set_command_fn(
    get_command_fn: Optional[Callable[[SerializationSettings], List[str]]],
)

By default, the task will run on the Flyte platform using the pyflyte-execute command. However, it can be useful to update the command with which the task is serialized for specific cases like running map tasks (“pyflyte-map-execute”) or for fast-executed tasks.

Parameter Type
get_command_fn Optional[Callable[[SerializationSettings], List[str]]]

set_resolver()

def set_resolver(
    resolver: TaskResolverMixin,
)

By default, flytekit uses the DefaultTaskResolver to resolve the task. This method allows the user to set a custom task resolver. It can be useful to override the task resolver for specific cases like running tasks in the jupyter notebook.

Parameter Type
resolver TaskResolverMixin

Properties

Property Type Description
container_image
deck_fields
If not empty, this task will output deck html file for the specified decks
disable_deck
If true, this task will not output deck html file
docs
enable_deck
If true, this task will output deck html file
environment
Any environment variables that supplied during the execution of the task.
instantiated_in
interface
lhs
location
metadata
name
python_interface
Returns this task’s python interface.
resources
security_context
task_config
Returns the user-specified task config which is used for plugin-specific handling of the task.
task_resolver
task_type
task_type_version