0.1.dev2184+g1e0cbe7.d20250401
flytekit.core.artifact
Directory
Classes
Variables
Property |
Type |
Description |
Inputs |
InputsBase |
|
MAX_PARTITIONS |
int |
|
O |
TypeVar |
|
TIME_PARTITION_KWARG |
str |
|
flytekit.core.artifact.Artifact
An Artifact is effectively just a metadata layer on top of data that exists in Flyte. Most data of interest
will be the output of tasks and workflows. The other category is user uploads.
This Python class has limited purpose, as a way for users to specify that tasks/workflows create Artifacts
and the manner (i.e. name, partitions) in which they are created.
Control creation parameters at task/workflow execution time ::
@task
def t1() -> Annotated[nn.Module, Artifact(name="my.artifact.name")]:
...
class Artifact(
project: Optional[str],
domain: Optional[str],
name: Optional[str],
version: Optional[str],
time_partitioned: bool,
time_partition: Optional[TimePartition],
time_partition_granularity: Optional[Granularity],
partition_keys: Optional[typing.List[str]],
partitions: Optional[Union[Partitions, typing.Dict[str, str]]],
)
Parameter |
Type |
project |
Optional[str] |
domain |
Optional[str] |
name |
Optional[str] |
version |
Optional[str] |
time_partitioned |
bool |
time_partition |
Optional[TimePartition] |
time_partition_granularity |
Optional[Granularity] |
partition_keys |
Optional[typing.List[str]] |
partitions |
Optional[Union[Partitions, typing.Dict[str, str]]] |
Methods
Method |
Description |
create_from() |
This function allows users to declare partition values dynamically from the body of a task. |
embed_as_query() |
This should only be called in the context of a Trigger. |
query() |
|
to_id_idl() |
Converts this object to the IDL representation. |
create_from()
def create_from(
o: O,
card: Optional[SerializableToString],
args: `*args`,
kwargs,
) -> O
This function allows users to declare partition values dynamically from the body of a task. Note that you’ll
still need to annotate your task function output with the relevant Artifact object. Below, one of the partition
values is bound to an input, and the other is set at runtime. Note that since tasks are not run at compile
time, flytekit cannot check that you’ve bound all the partition values. It’s up to you to ensure that you’ve
done so.
Pricing = Artifact(name="pricing", partition_keys=["region"])
EstError = Artifact(name="estimation_error", partition_keys=["dataset"], time_partitioned=True)
@task
def t1() -> Annotated[pd.DataFrame, Pricing], Annotated[float, EstError]:
df = get_pricing_results()
dt = get_time()
return Pricing.create_from(df, region="dubai"), EstError.create_from(msq_error, dataset="train", time_partition=dt)
You can mix and match with the input syntax as well.
@task
def my_task() -> Annotated[pd.DataFrame, RideCountData(region=Inputs.region)]:
...
return RideCountData.create_from(df, time_partition=datetime.datetime.now())
Parameter |
Type |
o |
O |
card |
Optional[SerializableToString] |
args |
*args |
kwargs |
**kwargs |
embed_as_query()
def embed_as_query(
partition: Optional[str],
bind_to_time_partition: Optional[bool],
expr: Optional[str],
op: Optional[Op],
) -> art_id.ArtifactQuery
This should only be called in the context of a Trigger. The type of query this returns is different from the
query() function. This type of query is used to reference the triggering artifact, rather than running a query.
Parameter |
Type |
partition |
Optional[str] |
bind_to_time_partition |
Optional[bool] |
expr |
Optional[str] |
op |
Optional[Op] |
query()
def query(
project: Optional[str],
domain: Optional[str],
time_partition: Optional[Union[datetime.datetime, TimePartition, art_id.InputBindingData]],
partitions: Optional[Union[typing.Dict[str, str], Partitions]],
kwargs,
) -> ArtifactQuery
Parameter |
Type |
project |
Optional[str] |
domain |
Optional[str] |
time_partition |
Optional[Union[datetime.datetime, TimePartition, art_id.InputBindingData]] |
partitions |
Optional[Union[typing.Dict[str, str], Partitions]] |
kwargs |
**kwargs |
to_id_idl()
Converts this object to the IDL representation.
This is here instead of translator because it’s in the interface, a relatively simple proto object
that’s exposed to the user.
Properties
Property |
Type |
Description |
concrete_artifact_id |
|
|
partitions |
|
|
time_partition |
|
|
flytekit.core.artifact.ArtifactIDSpecification
This is a special object that helps specify how Artifacts are to be created. See the comment in the
call function of the main Artifact class. Also see the handling code in transform_variable_map for more
information. There’s a limited set of information that we ultimately need in a TypedInterface, so it
doesn’t make sense to carry the full Artifact object around. This object should be sufficient, despite
having a pointer to the main artifact.
class ArtifactIDSpecification(
a: Artifact,
)
Parameter |
Type |
a |
Artifact |
Methods
bind_partitions()
def bind_partitions(
args,
kwargs,
) -> ArtifactIDSpecification
Parameter |
Type |
args |
*args |
kwargs |
**kwargs |
to_partial_artifact_id()
def to_partial_artifact_id()
flytekit.core.artifact.ArtifactQuery
class ArtifactQuery(
artifact: Artifact,
name: str,
project: Optional[str],
domain: Optional[str],
time_partition: Optional[TimePartition],
partitions: Optional[Partitions],
tag: Optional[str],
)
Parameter |
Type |
artifact |
Artifact |
name |
str |
project |
Optional[str] |
domain |
Optional[str] |
time_partition |
Optional[TimePartition] |
partitions |
Optional[Partitions] |
tag |
Optional[str] |
Methods
get_partition_str()
def get_partition_str(
kwargs,
) -> str
Parameter |
Type |
kwargs |
**kwargs |
get_str()
Parameter |
Type |
kwargs |
**kwargs |
get_time_partition_str()
def get_time_partition_str(
kwargs,
) -> str
Parameter |
Type |
kwargs |
**kwargs |
to_flyte_idl()
def to_flyte_idl(
kwargs,
) -> art_id.ArtifactQuery
Parameter |
Type |
kwargs |
**kwargs |
Properties
Property |
Type |
Description |
bound |
|
|
flytekit.core.artifact.ArtifactSerializationHandler
This protocol defines the interface for serializing artifact-related entities down to Flyte IDL.
class ArtifactSerializationHandler(
args,
kwargs,
)
Parameter |
Type |
args |
*args |
kwargs |
**kwargs |
Methods
artifact_query_to_idl()
def artifact_query_to_idl(
aq: ArtifactQuery,
kwargs,
) -> art_id.ArtifactQuery
Parameter |
Type |
aq |
ArtifactQuery |
kwargs |
**kwargs |
partitions_to_idl()
def partitions_to_idl(
p: Optional[Partitions],
kwargs,
) -> Optional[art_id.Partitions]
Parameter |
Type |
p |
Optional[Partitions] |
kwargs |
**kwargs |
time_partition_to_idl()
def time_partition_to_idl(
tp: Optional[TimePartition],
kwargs,
) -> Optional[art_id.TimePartition]
Parameter |
Type |
tp |
Optional[TimePartition] |
kwargs |
**kwargs |
flytekit.core.artifact.DefaultArtifactSerializationHandler
This protocol defines the interface for serializing artifact-related entities down to Flyte IDL.
Methods
artifact_query_to_idl()
def artifact_query_to_idl(
aq: ArtifactQuery,
kwargs,
) -> art_id.ArtifactQuery
Parameter |
Type |
aq |
ArtifactQuery |
kwargs |
**kwargs |
partitions_to_idl()
def partitions_to_idl(
p: Optional[Partitions],
kwargs,
) -> Optional[art_id.Partitions]
Parameter |
Type |
p |
Optional[Partitions] |
kwargs |
**kwargs |
time_partition_to_idl()
def time_partition_to_idl(
tp: Optional[TimePartition],
kwargs,
) -> Optional[art_id.TimePartition]
Parameter |
Type |
tp |
Optional[TimePartition] |
kwargs |
**kwargs |
A class to provide better partition semantics
Used for invoking an Artifact to bind partition keys to input values.
If there’s a good reason to use a metaclass in the future we can, but a simple instance suffices for now
flytekit.core.artifact.Partition
class Partition(
value: Optional[art_id.LabelValue],
name: str,
)
Parameter |
Type |
value |
Optional[art_id.LabelValue] |
name |
str |
flytekit.core.artifact.Partitions
class Partitions(
partitions: Optional[typing.Mapping[str, Union[str, art_id.InputBindingData, Partition]]],
)
Parameter |
Type |
partitions |
Optional[typing.Mapping[str, Union[str, art_id.InputBindingData, Partition]]] |
Methods
set_reference_artifact()
def set_reference_artifact(
artifact: Artifact,
)
Parameter |
Type |
artifact |
Artifact |
to_flyte_idl()
def to_flyte_idl(
kwargs,
) -> Optional[art_id.Partitions]
Parameter |
Type |
kwargs |
**kwargs |
Properties
Property |
Type |
Description |
partitions |
|
|
flytekit.core.artifact.Serializer
Methods
artifact_query_to_idl()
def artifact_query_to_idl(
aq: ArtifactQuery,
kwargs,
) -> art_id.ArtifactQuery
Parameter |
Type |
aq |
ArtifactQuery |
kwargs |
**kwargs |
partitions_to_idl()
def partitions_to_idl(
p: Optional[Partitions],
kwargs,
) -> Optional[art_id.Partitions]
Parameter |
Type |
p |
Optional[Partitions] |
kwargs |
**kwargs |
register_serializer()
def register_serializer(
serializer: ArtifactSerializationHandler,
)
Parameter |
Type |
serializer |
ArtifactSerializationHandler |
time_partition_to_idl()
def time_partition_to_idl(
tp: TimePartition,
kwargs,
) -> Optional[art_id.TimePartition]
Parameter |
Type |
tp |
TimePartition |
kwargs |
**kwargs |
flytekit.core.artifact.TimePartition
class TimePartition(
value: Union[art_id.LabelValue, art_id.InputBindingData, str, datetime.datetime, None],
op: Optional[Op],
other: Optional[timedelta],
granularity: Granularity,
)
Parameter |
Type |
value |
Union[art_id.LabelValue, art_id.InputBindingData, str, datetime.datetime, None] |
op |
Optional[Op] |
other |
Optional[timedelta] |
granularity |
Granularity |
Methods
to_flyte_idl()
def to_flyte_idl(
kwargs,
) -> Optional[art_id.TimePartition]
Parameter |
Type |
kwargs |
**kwargs |