0.1.dev2184+g1e0cbe7.d20250401
flytekit.configuration
Configuration
Flytekit Configuration Sources
There are multiple ways to configure flytekit settings:
Command Line Arguments
This is the recommended way of setting configuration values for many cases. For example, see pyflyte package
command.
Python Config Object
A Config
object can be used directly, e.g. when initializing a FlyteRemote
object. See the Control Plane design docs for examples on how to specify a Config
object.
Environment Variables
Users can specify these at compile time, but when your task is run, Flyte Propeller will also set configuration to ensure correct interaction with the platform. The environment variables must be specified with the format FLYTE_{SECTION}_{OPTION}
, all in upper case. For example, to specify the PlatformConfig.endpoint
setting, the environment variable would be FLYTE_PLATFORM_URL
.
Environment variables won’t work for image configuration, which need to be specified with the pyflyte package --image ...
option or in a configuration file.
A configuration file that contains settings for both flytectl
and flytekit
. This is the recommended configuration file format. Invoke the flytectl config init
command to create a boilerplate ~/.flyte/config.yaml
file, and flytectl --help
to learn about all of the configuration yaml options.
Example config.yaml
file:
# Sample config file
admin:
# For GRPC endpoints you might want to use dns:///flyte.myexample.com
endpoint: dns:///localhost:8089
authType: Pkce
insecure: true
logger:
show-source: true
level: 0
console:
endpoint: http://localhost:8080
insecure: true
# This section is used only in the control plane to trigger a remote execution
storage:
type: minio
stow:
kind: s3
config:
auth_type: accesskey
access_key_id: minio
secret_key: miniostorage
endpoint: http://localhost:9000
region: us-east-1
disable_ssl: true
addressing_style: "path"
### INI Format Configuration File
A configuration file for `flytekit`. By default, `flytekit` will look for a file in two places:
1. First, a file named `flytekit.config` in the Python interpreter's working directory.
2. A file in `~/.flyte/config` in the home directory as detected by Python.
Example `flytekit.config` file:
```ini
[sdk]
workflow_packages=my_cool_workflows, other_workflows
The INI format configuration is considered a legacy configuration format. We recommend using the yaml format instead if you’re using a configuration file.
How is configuration used?
Configuration usage can roughly be bucketed into the following areas:
- Compile-time settings: these are settings like the default image and named images, where to look for Flyte code, etc.
- Platform settings: Where to find the Flyte backend (Admin DNS, whether to use SSL)
- Registration Run-time settings: these are things like the K8s service account to use, a specific S3/GCS bucket to write off-loaded data (dataframes and files) to, notifications, labels & annotations, etc.
- Data access settings: Is there a custom S3 endpoint in use? Backoff/retry behavior for accessing S3/GCS, key and password, etc.
- Other settings - Statsd configuration, which is a run-time applicable setting but is not necessarily relevant to the Flyte platform.
Configuration Objects
The following objects are encapsulated in a parent object called Config
:
Serialization Time Settings
These are serialization/compile-time settings that are used when using commands like pyflyte package
or pyflyte register
. These configuration settings are typically passed in as flags to the above CLI commands.
The image configurations are typically either passed in via an --image
flag, or can be specified in the yaml
or ini
configuration files (see examples above).
- Image: Represents a container image with optional configuration overrides.
- ImageConfig: Represents an image configuration for a given project/domain combination.
- SerializationSettings: Controls how to serialize Flyte entities when registering with Admin.
- FastSerializationSettings: Configuration for faster serialization settings.
Execution Time Settings
Users typically shouldn’t be concerned with these configurations, as they are typically set by FlytePropeller or FlyteAdmin. The configurations below are useful for authenticating to a Flyte backend, configuring data access credentials, secrets, and statsd metrics.
- PlatformConfig: Configuration for how to connect to the Flyte platform.
- StatsConfig: Configuration for how to emit statsd metrics.
- SecretsConfig: Configuration for how to access secrets.
- S3Config: Amazon S3 specific configuration.
- GCSConfig: Google Cloud Storage specific configuration.
- DataConfig: Configuration for data access.
Directory
Classes
Class |
Description |
AzureBlobStorageConfig |
Any Azure Blob Storage specific configuration. |
Config |
This the parent configuration object and holds all the underlying configuration object types. |
DataConfig |
Any data storage specific configuration. |
EntrypointSettings |
This object carries information about the path of the entrypoint command that will be invoked at runtime. |
FastSerializationSettings |
This object hold information about settings necessary to serialize an object so that it can be fast-registered. |
GCSConfig |
Any GCS specific configuration. |
GenericPersistenceConfig |
Data storage configuration that applies across any provider. |
Image |
Image is a structured wrapper for task container images used in object serialization. |
ImageConfig |
We recommend you to use ImageConfig. |
LocalConfig |
Any configuration specific to local runs. |
PlatformConfig |
This object contains the settings to talk to a Flyte backend (the DNS location of your Admin server basically). |
S3Config |
S3 specific configuration. |
SecretsConfig |
Configuration for secrets. |
SerializationSettings |
These settings are provided while serializing a workflow and task, before registration. |
StatsConfig |
Configuration for sending statsd. |
Variables
Property |
Type |
Description |
DEFAULT_FLYTEKIT_ENTRYPOINT_FILELOC |
str |
|
DEFAULT_IMAGE_NAME |
str |
|
DEFAULT_IN_CONTAINER_SRC_PATH |
str |
|
DEFAULT_RUNTIME_PYTHON_INTERPRETER |
str |
|
DOMAIN_PLACEHOLDER |
str |
|
PROJECT_PLACEHOLDER |
str |
|
SERIALIZED_CONTEXT_ENV_VAR |
str |
|
VERSION_PLACEHOLDER |
str |
|
flytekit.configuration.AzureBlobStorageConfig
Any Azure Blob Storage specific configuration.
class AzureBlobStorageConfig(
account_name: typing.Optional[str],
account_key: typing.Optional[str],
tenant_id: typing.Optional[str],
client_id: typing.Optional[str],
client_secret: typing.Optional[str],
)
Parameter |
Type |
account_name |
typing.Optional[str] |
account_key |
typing.Optional[str] |
tenant_id |
typing.Optional[str] |
client_id |
typing.Optional[str] |
client_secret |
typing.Optional[str] |
Methods
auto()
def auto(
config_file: typing.Union[str, ConfigFile],
) -> GCSConfig
Parameter |
Type |
config_file |
typing.Union[str, ConfigFile] |
flytekit.configuration.Config
This the parent configuration object and holds all the underlying configuration object types. An instance of
this object holds all the config necessary to
- Interactive session with Flyte backend
- Some parts are required for Serialization, for example Platform Config is not required
- Runtime of a task
class Config(
platform: PlatformConfig,
secrets: SecretsConfig,
stats: StatsConfig,
data_config: DataConfig,
local_sandbox_path: str,
)
Parameter |
Type |
platform |
PlatformConfig |
secrets |
SecretsConfig |
stats |
StatsConfig |
data_config |
DataConfig |
local_sandbox_path |
str |
Methods
Method |
Description |
auto() |
Automatically constructs the Config Object. |
for_endpoint() |
Creates an automatic config for the given endpoint and uses the config_file or environment variable for default. |
for_sandbox() |
Constructs a new Config object specifically to connect to :std:ref:deployment-deployment-sandbox . |
with_params() |
|
auto()
def auto(
config_file: typing.Union[str, ConfigFile, None],
) -> n: Config
Automatically constructs the Config Object. The order of precedence is as follows
- first try to find any env vars that match the config vars specified in the FLYTE_CONFIG format.
- If not found in environment then values ar read from the config file
- If not found in the file, then the default values are used.
Parameter |
Type |
config_file |
typing.Union[str, ConfigFile, None] |
for_endpoint()
def for_endpoint(
endpoint: str,
insecure: bool,
data_config: typing.Optional[DataConfig],
config_file: typing.Union[str, ConfigFile],
) -> n: Config
Creates an automatic config for the given endpoint and uses the config_file or environment variable for default.
Refer to Config.auto()
to understand the default bootstrap behavior.
data_config can be used to configure how data is downloaded or uploaded to a specific Blob storage like S3 / GCS etc.
But, for permissions to a specific backend just use Cloud providers reqcommendation. If using fsspec, then
refer to fsspec documentation
Parameter |
Type |
endpoint |
str |
insecure |
bool |
data_config |
typing.Optional[DataConfig] |
config_file |
typing.Union[str, ConfigFile] |
for_sandbox()
Constructs a new Config object specifically to connect to :std:ref:deployment-deployment-sandbox
.
If you are using a hosted Sandbox like environment, then you may need to use port-forward or ingress urls
:return: Config
with_params()
def with_params(
platform: PlatformConfig,
secrets: SecretsConfig,
stats: StatsConfig,
data_config: DataConfig,
local_sandbox_path: str,
) -> Config
Parameter |
Type |
platform |
PlatformConfig |
secrets |
SecretsConfig |
stats |
StatsConfig |
data_config |
DataConfig |
local_sandbox_path |
str |
flytekit.configuration.DataConfig
Any data storage specific configuration. Please do not use this to store secrets, in S3 case, as it is used in
Flyte sandbox environment we store the access key id and secret.
All DataPersistence plugins are passed all DataConfig and the plugin should correctly use the right config
class DataConfig(
s3: S3Config,
gcs: GCSConfig,
azure: AzureBlobStorageConfig,
generic: GenericPersistenceConfig,
)
Parameter |
Type |
s3 |
S3Config |
gcs |
GCSConfig |
azure |
AzureBlobStorageConfig |
generic |
GenericPersistenceConfig |
Methods
auto()
def auto(
config_file: typing.Union[str, ConfigFile],
) -> DataConfig
Parameter |
Type |
config_file |
typing.Union[str, ConfigFile] |
flytekit.configuration.EntrypointSettings
This object carries information about the path of the entrypoint command that will be invoked at runtime.
This is where pyflyte-execute
code can be found. This is useful for cases like pyspark execution.
class EntrypointSettings(
path: Optional[str],
)
Parameter |
Type |
path |
Optional[str] |
Methods
from_dict()
def from_dict(
kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
infer_missing,
) -> ~A
Parameter |
Type |
kvs |
typing.Union[dict, list, str, int, float, bool, NoneType] |
infer_missing |
|
from_json()
def from_json(
s: typing.Union[str, bytes, bytearray],
parse_float,
parse_int,
parse_constant,
infer_missing,
kw,
) -> ~A
Parameter |
Type |
s |
typing.Union[str, bytes, bytearray] |
parse_float |
|
parse_int |
|
parse_constant |
|
infer_missing |
|
kw |
|
schema()
def schema(
infer_missing: bool,
only,
exclude,
many: bool,
context,
load_only,
dump_only,
partial: bool,
unknown,
) -> SchemaType[A]
Parameter |
Type |
infer_missing |
bool |
only |
|
exclude |
|
many |
bool |
context |
|
load_only |
|
dump_only |
|
partial |
bool |
unknown |
|
to_dict()
def to_dict(
encode_json,
) -> typing.Dict[str, typing.Union[dict, list, str, int, float, bool, NoneType]]
Parameter |
Type |
encode_json |
|
to_json()
def to_json(
skipkeys: bool,
ensure_ascii: bool,
check_circular: bool,
allow_nan: bool,
indent: typing.Union[int, str, NoneType],
separators: typing.Tuple[str, str],
default: typing.Callable,
sort_keys: bool,
kw,
) -> str
Parameter |
Type |
skipkeys |
bool |
ensure_ascii |
bool |
check_circular |
bool |
allow_nan |
bool |
indent |
typing.Union[int, str, NoneType] |
separators |
typing.Tuple[str, str] |
default |
typing.Callable |
sort_keys |
bool |
kw |
|
flytekit.configuration.FastSerializationSettings
This object hold information about settings necessary to serialize an object so that it can be fast-registered.
class FastSerializationSettings(
enabled: bool,
destination_dir: Optional[str],
distribution_location: Optional[str],
)
Parameter |
Type |
enabled |
bool |
destination_dir |
Optional[str] |
distribution_location |
Optional[str] |
Methods
from_dict()
def from_dict(
kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
infer_missing,
) -> ~A
Parameter |
Type |
kvs |
typing.Union[dict, list, str, int, float, bool, NoneType] |
infer_missing |
|
from_json()
def from_json(
s: typing.Union[str, bytes, bytearray],
parse_float,
parse_int,
parse_constant,
infer_missing,
kw,
) -> ~A
Parameter |
Type |
s |
typing.Union[str, bytes, bytearray] |
parse_float |
|
parse_int |
|
parse_constant |
|
infer_missing |
|
kw |
|
schema()
def schema(
infer_missing: bool,
only,
exclude,
many: bool,
context,
load_only,
dump_only,
partial: bool,
unknown,
) -> SchemaType[A]
Parameter |
Type |
infer_missing |
bool |
only |
|
exclude |
|
many |
bool |
context |
|
load_only |
|
dump_only |
|
partial |
bool |
unknown |
|
to_dict()
def to_dict(
encode_json,
) -> typing.Dict[str, typing.Union[dict, list, str, int, float, bool, NoneType]]
Parameter |
Type |
encode_json |
|
to_json()
def to_json(
skipkeys: bool,
ensure_ascii: bool,
check_circular: bool,
allow_nan: bool,
indent: typing.Union[int, str, NoneType],
separators: typing.Tuple[str, str],
default: typing.Callable,
sort_keys: bool,
kw,
) -> str
Parameter |
Type |
skipkeys |
bool |
ensure_ascii |
bool |
check_circular |
bool |
allow_nan |
bool |
indent |
typing.Union[int, str, NoneType] |
separators |
typing.Tuple[str, str] |
default |
typing.Callable |
sort_keys |
bool |
kw |
|
flytekit.configuration.GCSConfig
Any GCS specific configuration.
class GCSConfig(
gsutil_parallelism: bool,
)
Parameter |
Type |
gsutil_parallelism |
bool |
Methods
auto()
def auto(
config_file: typing.Union[str, ConfigFile],
) -> GCSConfig
Parameter |
Type |
config_file |
typing.Union[str, ConfigFile] |
flytekit.configuration.GenericPersistenceConfig
Data storage configuration that applies across any provider.
class GenericPersistenceConfig(
attach_execution_metadata: bool,
)
Parameter |
Type |
attach_execution_metadata |
bool |
Methods
auto()
def auto(
config_file: typing.Union[str, ConfigFile],
) -> GCSConfig
Parameter |
Type |
config_file |
typing.Union[str, ConfigFile] |
flytekit.configuration.Image
Image is a structured wrapper for task container images used in object serialization.
Attributes:
name (str): A user-provided name to identify this image.
fqn (str): Fully qualified image name. This consists of
#. a registry location
#. a username
#. a repository name
For example: hostname/username/reponame
tag (str): Optional tag used to specify which version of an image to pull
digest (str): Optional digest used to specify which version of an image to pull
class Image(
name: str,
fqn: str,
tag: Optional[str],
digest: Optional[str],
)
Parameter |
Type |
name |
str |
fqn |
str |
tag |
Optional[str] |
digest |
Optional[str] |
Methods
from_dict()
def from_dict(
kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
infer_missing,
) -> ~A
Parameter |
Type |
kvs |
typing.Union[dict, list, str, int, float, bool, NoneType] |
infer_missing |
|
from_json()
def from_json(
s: typing.Union[str, bytes, bytearray],
parse_float,
parse_int,
parse_constant,
infer_missing,
kw,
) -> ~A
Parameter |
Type |
s |
typing.Union[str, bytes, bytearray] |
parse_float |
|
parse_int |
|
parse_constant |
|
infer_missing |
|
kw |
|
look_up_image_info()
def look_up_image_info(
name: str,
image_identifier: str,
allow_no_tag_or_digest: bool,
) -> e: Image
Creates an Image
object from an image identifier string or a path to an ImageSpec yaml file.
This function is used when registering tasks/workflows with Admin. When using
the canonical Python-based development cycle, the version that is used to
register workflows and tasks with Admin should be the version of the image
itself, which should ideally be something unique like the git revision SHA1 of
the latest commit.
Parameter |
Type |
name |
str |
image_identifier |
str |
allow_no_tag_or_digest |
bool |
schema()
def schema(
infer_missing: bool,
only,
exclude,
many: bool,
context,
load_only,
dump_only,
partial: bool,
unknown,
) -> SchemaType[A]
Parameter |
Type |
infer_missing |
bool |
only |
|
exclude |
|
many |
bool |
context |
|
load_only |
|
dump_only |
|
partial |
bool |
unknown |
|
to_dict()
def to_dict(
encode_json,
) -> typing.Dict[str, typing.Union[dict, list, str, int, float, bool, NoneType]]
Parameter |
Type |
encode_json |
|
to_json()
def to_json(
skipkeys: bool,
ensure_ascii: bool,
check_circular: bool,
allow_nan: bool,
indent: typing.Union[int, str, NoneType],
separators: typing.Tuple[str, str],
default: typing.Callable,
sort_keys: bool,
kw,
) -> str
Parameter |
Type |
skipkeys |
bool |
ensure_ascii |
bool |
check_circular |
bool |
allow_nan |
bool |
indent |
typing.Union[int, str, NoneType] |
separators |
typing.Tuple[str, str] |
default |
typing.Callable |
sort_keys |
bool |
kw |
|
Properties
Property |
Type |
Description |
full |
|
" Return the full image name with tag or digest, whichever is available. When using a tag the separator is : and when using a digest the separator is @ .
|
version |
|
Return the version of the image. This could be the tag or digest, whichever is available.
|
flytekit.configuration.ImageConfig
We recommend you to use ImageConfig.auto(img_name=None) to create an ImageConfig.
For example, ImageConfig.auto(img_name=““ghcr.io/flyteorg/flytecookbook:v1.0.0"”) will create an ImageConfig.
ImageConfig holds available images which can be used at registration time. A default image can be specified
along with optional additional images. Each image in the config must have a unique name.
Attributes:
default_image (Optional[Image]): The default image to be used as a container for task serialization.
images (List[Image]): Optional, additional images which can be used in task container definitions.
class ImageConfig(
default_image: Optional[Image],
images: Optional[List[Image]],
)
Parameter |
Type |
default_image |
Optional[Image] |
images |
Optional[List[Image]] |
Methods
auto()
def auto(
config_file: typing.Union[str, ConfigFile, None],
img_name: Optional[str],
) -> n:
Reads from config file or from img_name
Note that this function does not take into account the flytekit default images (see the Dockerfiles at the
base of this repo). To pick those up, see the auto_default_image function..
Parameter |
Type |
config_file |
typing.Union[str, ConfigFile, None] |
img_name |
Optional[str] |
auto_default_image()
create_from()
def create_from(
default_image: Optional[Image],
other_images: typing.Optional[typing.List[Image]],
) -> ImageConfig
Parameter |
Type |
default_image |
Optional[Image] |
other_images |
typing.Optional[typing.List[Image]] |
find_image()
def find_image(
name,
) -> Optional[Image]
Return an image, by name, if it exists.
from_dict()
def from_dict(
kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
infer_missing,
) -> ~A
Parameter |
Type |
kvs |
typing.Union[dict, list, str, int, float, bool, NoneType] |
infer_missing |
|
from_images()
def from_images(
default_image: str,
m: typing.Optional[typing.Dict[str, str]],
)
Allows you to programmatically create an ImageConfig. Usually only the default_image is required, unless
your workflow uses multiple images
ImageConfig.from_dict(
"ghcr.io/flyteorg/flytecookbook:v1.0.0",
{
"spark": "ghcr.io/flyteorg/myspark:...",
"other": "...",
}
)
urn:
Parameter |
Type |
default_image |
str |
m |
typing.Optional[typing.Dict[str, str]] |
from_json()
def from_json(
s: typing.Union[str, bytes, bytearray],
parse_float,
parse_int,
parse_constant,
infer_missing,
kw,
) -> ~A
Parameter |
Type |
s |
typing.Union[str, bytes, bytearray] |
parse_float |
|
parse_int |
|
parse_constant |
|
infer_missing |
|
kw |
|
schema()
def schema(
infer_missing: bool,
only,
exclude,
many: bool,
context,
load_only,
dump_only,
partial: bool,
unknown,
) -> SchemaType[A]
Parameter |
Type |
infer_missing |
bool |
only |
|
exclude |
|
many |
bool |
context |
|
load_only |
|
dump_only |
|
partial |
bool |
unknown |
|
to_dict()
def to_dict(
encode_json,
) -> typing.Dict[str, typing.Union[dict, list, str, int, float, bool, NoneType]]
Parameter |
Type |
encode_json |
|
to_json()
def to_json(
skipkeys: bool,
ensure_ascii: bool,
check_circular: bool,
allow_nan: bool,
indent: typing.Union[int, str, NoneType],
separators: typing.Tuple[str, str],
default: typing.Callable,
sort_keys: bool,
kw,
) -> str
Parameter |
Type |
skipkeys |
bool |
ensure_ascii |
bool |
check_circular |
bool |
allow_nan |
bool |
indent |
typing.Union[int, str, NoneType] |
separators |
typing.Tuple[str, str] |
default |
typing.Callable |
sort_keys |
bool |
kw |
|
validate_image()
def validate_image(
_: typing.Any,
param: str,
values: tuple,
) -> n:
Validates the image to match the standard format. Also validates that only one default image
is provided. a default image, is one that is specified as default=<image_uri>
or just <image_uri>
. All
other images should be provided with a name, in the format name=<image_uri>
This method can be used with the
CLI
Parameter |
Type |
_ |
typing.Any |
param |
str |
values |
tuple |
flytekit.configuration.LocalConfig
Any configuration specific to local runs.
class LocalConfig(
cache_enabled: bool,
cache_overwrite: bool,
)
Parameter |
Type |
cache_enabled |
bool |
cache_overwrite |
bool |
Methods
auto()
def auto(
config_file: typing.Union[str, ConfigFile],
) -> LocalConfig
Parameter |
Type |
config_file |
typing.Union[str, ConfigFile] |
This object contains the settings to talk to a Flyte backend (the DNS location of your Admin server basically).
class PlatformConfig(
endpoint: str,
insecure: bool,
insecure_skip_verify: bool,
ca_cert_file_path: typing.Optional[str],
console_endpoint: typing.Optional[str],
command: typing.Optional[typing.List[str]],
proxy_command: typing.Optional[typing.List[str]],
client_id: typing.Optional[str],
client_credentials_secret: typing.Optional[str],
scopes: List[str],
auth_mode: AuthType,
audience: typing.Optional[str],
rpc_retries: int,
http_proxy_url: typing.Optional[str],
)
Parameter |
Type |
endpoint |
str |
insecure |
bool |
insecure_skip_verify |
bool |
ca_cert_file_path |
typing.Optional[str] |
console_endpoint |
typing.Optional[str] |
command |
typing.Optional[typing.List[str]] |
proxy_command |
typing.Optional[typing.List[str]] |
client_id |
typing.Optional[str] |
client_credentials_secret |
typing.Optional[str] |
scopes |
List[str] |
auth_mode |
AuthType |
audience |
typing.Optional[str] |
rpc_retries |
int |
http_proxy_url |
typing.Optional[str] |
Methods
Method |
Description |
auto() |
Reads from Config file, and overrides from Environment variables. |
for_endpoint() |
|
auto()
def auto(
config_file: typing.Optional[typing.Union[str, ConfigFile]],
) -> n:
Reads from Config file, and overrides from Environment variables. Refer to ConfigEntry for details
Parameter |
Type |
config_file |
typing.Optional[typing.Union[str, ConfigFile]] |
for_endpoint()
def for_endpoint(
endpoint: str,
insecure: bool,
) -> PlatformConfig
Parameter |
Type |
endpoint |
str |
insecure |
bool |
flytekit.configuration.S3Config
S3 specific configuration
class S3Config(
enable_debug: bool,
endpoint: typing.Optional[str],
retries: int,
backoff: datetime.timedelta,
access_key_id: typing.Optional[str],
secret_access_key: typing.Optional[str],
)
Parameter |
Type |
enable_debug |
bool |
endpoint |
typing.Optional[str] |
retries |
int |
backoff |
datetime.timedelta |
access_key_id |
typing.Optional[str] |
secret_access_key |
typing.Optional[str] |
Methods
Method |
Description |
auto() |
Automatically configure. |
auto()
def auto(
config_file: typing.Union[str, ConfigFile],
) -> n: Config
Automatically configure
Parameter |
Type |
config_file |
typing.Union[str, ConfigFile] |
flytekit.configuration.SecretsConfig
Configuration for secrets.
class SecretsConfig(
env_prefix: str,
default_dir: str,
file_prefix: str,
)
Parameter |
Type |
env_prefix |
str |
default_dir |
str |
file_prefix |
str |
Methods
Method |
Description |
auto() |
Reads from environment variable or from config file. |
auto()
def auto(
config_file: typing.Union[str, ConfigFile],
) -> n:
Reads from environment variable or from config file
Parameter |
Type |
config_file |
typing.Union[str, ConfigFile] |
flytekit.configuration.SerializationSettings
These settings are provided while serializing a workflow and task, before registration. This is required to get
runtime information at serialization time, as well as some defaults.
Attributes:
project (str): The project (if any) with which to register entities under.
domain (str): The domain (if any) with which to register entities under.
version (str): The version (if any) with which to register entities under.
image_config (ImageConfig): The image config used to define task container images.
env (Optional[Dict[str, str]]): Environment variables injected into task container definitions.
flytekit_virtualenv_root (Optional[str]): During out of container serialize the absolute path of the flytekit
virtualenv at serialization time won’t match the in-container value at execution time. This optional value
is used to provide the in-container virtualenv path
python_interpreter (Optional[str]): The python executable to use. This is used for spark tasks in out of
container execution.
entrypoint_settings (Optional[EntrypointSettings]): Information about the command, path and version of the
entrypoint program.
fast_serialization_settings (Optional[FastSerializationSettings]): If the code is being serialized so that it
can be fast registered (and thus omit building a Docker image) this object contains additional parameters
for serialization.
source_root (Optional[str]): The root directory of the source code.
class SerializationSettings(
image_config: ImageConfig,
project: typing.Optional[str],
domain: typing.Optional[str],
version: typing.Optional[str],
env: Optional[Dict[str, str]],
git_repo: Optional[str],
python_interpreter: str,
flytekit_virtualenv_root: Optional[str],
fast_serialization_settings: Optional[FastSerializationSettings],
source_root: Optional[str],
)
Parameter |
Type |
image_config |
ImageConfig |
project |
typing.Optional[str] |
domain |
typing.Optional[str] |
version |
typing.Optional[str] |
env |
Optional[Dict[str, str]] |
git_repo |
Optional[str] |
python_interpreter |
str |
flytekit_virtualenv_root |
Optional[str] |
fast_serialization_settings |
Optional[FastSerializationSettings] |
source_root |
Optional[str] |
Methods
default_entrypoint_settings()
def default_entrypoint_settings(
interpreter_path: str,
) -> EntrypointSettings
Assumes the entrypoint is installed in a virtual-environment where the interpreter is
Parameter |
Type |
interpreter_path |
str |
for_image()
def for_image(
image: str,
version: str,
project: str,
domain: str,
python_interpreter_path: str,
) -> SerializationSettings
Parameter |
Type |
image |
str |
version |
str |
project |
str |
domain |
str |
python_interpreter_path |
str |
from_dict()
def from_dict(
kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
infer_missing,
) -> ~A
Parameter |
Type |
kvs |
typing.Union[dict, list, str, int, float, bool, NoneType] |
infer_missing |
|
from_json()
def from_json(
s: typing.Union[str, bytes, bytearray],
parse_float,
parse_int,
parse_constant,
infer_missing,
kw,
) -> ~A
Parameter |
Type |
s |
typing.Union[str, bytes, bytearray] |
parse_float |
|
parse_int |
|
parse_constant |
|
infer_missing |
|
kw |
|
from_transport()
def from_transport(
s: str,
) -> SerializationSettings
new_builder()
Creates a SerializationSettings.Builder
that copies the existing serialization settings parameters and
allows for customization.
schema()
def schema(
infer_missing: bool,
only,
exclude,
many: bool,
context,
load_only,
dump_only,
partial: bool,
unknown,
) -> SchemaType[A]
Parameter |
Type |
infer_missing |
bool |
only |
|
exclude |
|
many |
bool |
context |
|
load_only |
|
dump_only |
|
partial |
bool |
unknown |
|
should_fast_serialize()
def should_fast_serialize()
Whether or not the serialization settings specify that entities should be serialized for fast registration.
to_dict()
def to_dict(
encode_json,
) -> typing.Dict[str, typing.Union[dict, list, str, int, float, bool, NoneType]]
Parameter |
Type |
encode_json |
|
to_json()
def to_json(
skipkeys: bool,
ensure_ascii: bool,
check_circular: bool,
allow_nan: bool,
indent: typing.Union[int, str, NoneType],
separators: typing.Tuple[str, str],
default: typing.Callable,
sort_keys: bool,
kw,
) -> str
Parameter |
Type |
skipkeys |
bool |
ensure_ascii |
bool |
check_circular |
bool |
allow_nan |
bool |
indent |
typing.Union[int, str, NoneType] |
separators |
typing.Tuple[str, str] |
default |
typing.Callable |
sort_keys |
bool |
kw |
|
venv_root_from_interpreter()
def venv_root_from_interpreter(
interpreter_path: str,
) -> str
Computes the path of the virtual environment root, based on the passed in python interpreter path
for example /opt/venv/bin/python3 -> /opt/venv
Parameter |
Type |
interpreter_path |
str |
with_serialized_context()
def with_serialized_context()
Use this method to create a new SerializationSettings that has an environment variable set with the SerializedContext
This is useful in transporting SerializedContext to serialized and registered tasks.
The setting will be available in the env
field with the key SERIALIZED_CONTEXT_ENV_VAR
:return: A newly constructed SerializationSettings, or self, if it already has the serializationSettings
Properties
Property |
Type |
Description |
entrypoint_settings |
|
|
serialized_context |
|
:return: returns the serialization context as a base64encoded, gzip compressed, json strinnn
|
flytekit.configuration.StatsConfig
Configuration for sending statsd.
class StatsConfig(
host: str,
port: int,
disabled: bool,
disabled_tags: bool,
)
Parameter |
Type |
host |
str |
port |
int |
disabled |
bool |
disabled_tags |
bool |
Methods
Method |
Description |
auto() |
Reads from environment variable, followed by ConfigFile provided. |
auto()
def auto(
config_file: typing.Union[str, ConfigFile],
) -> n:
Reads from environment variable, followed by ConfigFile provided
Parameter |
Type |
config_file |
typing.Union[str, ConfigFile] |