Weights and Biases Example
Once you have a Union account, install union
:
pip install union
Export the following environment variable to build and push images to your own container registry:
# replace with your registry name
export IMAGE_SPEC_REGISTRY="<your-container-registry>"
Then run the following commands to run the workflow:
git clone https://github.com/unionai/unionai-examples
cd unionai-examples
union run --remote tutorials/sentiment_classifier/sentiment_classifier.py main --model distilbert-base-uncased
The source code for this tutorial can be found here {octicon}mark-github
.
from flytekit import ImageSpec, Secret, task, workflow
from flytekitplugins.wandb import wandb_init
First, we specify the project and entity that we will use with Weights and Biases.
Please update WANDB_ENTITY
to the value associated with your account.
WANDB_PROJECT = "flytekit-wandb-plugin"
WANDB_ENTITY = "github-username"
W&B requires an API key to authenticate with their service. In the above example, the secret is created using Flyte’s Secrets manager.
SECRET_KEY = "wandb-api-key"
SECRET_GROUP = "wandb-api-group"
wandb_secret = Secret(key=SECRET_KEY, group=SECRET_GROUP)
Next, we use ImageSpec
to construct a container that contains the dependencies for this
task:
REGISTRY = "localhost:30000"
image = ImageSpec(
name="wandb_example",
python_version="3.11",
packages=["flytekitplugins-wandb", "xgboost", "scikit-learn"],
registry=REGISTRY,
)
The wandb_init
decorator calls wandb.init
and configures it to use Flyte’s
execution id as the Weight and Biases run id. The body of the task is XGBoost training
code, where we pass WandbCallback
into XGBClassifier
’s callbacks
.
@task(
container_image=image,
secret_requests=[wandb_secret],
)
@wandb_init(project=WANDB_PROJECT, entity=WANDB_ENTITY, secret=wandb_secret)
def train() -> float:
import wandb
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from wandb.integration.xgboost import WandbCallback
from xgboost import XGBClassifier
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
bst = XGBClassifier(
n_estimators=100,
objective="binary:logistic",
callbacks=[WandbCallback(log_model=True)],
)
bst.fit(X_train, y_train)
test_score = bst.score(X_test, y_test)
# Log custom metrics
wandb.run.log({"test_score": test_score})
return test_score
@workflow
def wf() -> float:
return train()
To enable dynamic log links, add plugin to Flyte’s configuration file:
dynamic-log-links:
- wandb-execution-id:
displayName: Weights & Biases
templateUris: '{{ .taskConfig.host }}/{{ .taskConfig.entity }}/{{ .taskConfig.project }}/runs/{{ .executionName }}-{{ .nodeId }}-{{ .taskRetryAttempt }}'
- wandb-custom-id:
displayName: Weights & Biases
templateUris: '{{ .taskConfig.host }}/{{ .taskConfig.entity }}/{{ .taskConfig.project }}/runs/{{ .taskConfig.id }}'