FlyteInteractive Jupyter Decorator
Once you have a Union account, install union
:
pip install union
Export the following environment variable to build and push images to your own container registry:
# replace with your registry name
export IMAGE_SPEC_REGISTRY="<your-container-registry>"
Then run the following commands to run the workflow:
git clone https://github.com/unionai/unionai-examples
cd unionai-examples
union run --remote tutorials/sentiment_classifier/sentiment_classifier.py main --model distilbert-base-uncased
The source code for this tutorial can be found here {octicon}mark-github
.
@jupyter
task decorator launches and monitors a Jupyter notebook server.
Usage
1. Add the @jupyter
decorator to a task function definition
The @jupyter
decorator takes the following optional parameters:
- max_idle_seconds: Optional[int] (default 36000)
- port: Optional[int] (default 8888)
- enable: Optional[bool] (default True)
- notebook_dir: Optional[str] (default “/root”)
- pre_execute: Optional[Callable] (default None)
- post_execute: Optional[Callable], (default None)
from flytekit import task, workflow
from flytekitplugins.flyteinteractive import jupyter
@task
@jupyter
def jupyter_task():
print("opened notebook")
@workflow
def wf():
jupyter_task()
if __name__ == "__main__":
print(wf())
2. Connect to the Jupyter notebook server
You can connect in two ways:
-
(Recommended) Expose a URL on the Flyte console. Set up ingress on the Flyte backend to expose a URL on the Flyte console. Details are to be determined (TBD).
-
Use port forwarding. To use port forwarding, execute the following command:
$ kubectl port-forward <pod name> <port>
Then, open a browser and navigate to
localhost:<port>
, replacing<port>
with the port number configured above. You should be presented with the Jupyter notebook interface.