Snowflake plugin example
Once you have a Union account, install union
:
pip install union
Export the following environment variable to build and push images to your own container registry:
# replace with your registry name
export IMAGE_SPEC_REGISTRY="<your-container-registry>"
Then run the following commands to run the workflow:
git clone https://github.com/unionai/unionai-examples
cd unionai-examples
union run --remote tutorials/sentiment_classifier/sentiment_classifier.py main --model distilbert-base-uncased
The source code for this tutorial can be found here {octicon}mark-github
.
from flytekit import kwtypes, workflow
from flytekitplugins.snowflake import SnowflakeConfig, SnowflakeTask
snowflake_task_no_io = SnowflakeTask(
name="sql.snowflake.no_io",
inputs={},
query_template="SELECT 1",
output_schema_type=None,
task_config=SnowflakeConfig(
account="<SNOWFLAKE_ACCOUNT_ID>",
database="SNOWFLAKE_SAMPLE_DATA",
schema="TPCH_SF1000",
warehouse="COMPUTE_WH",
),
)
snowflake_task_templatized_query = SnowflakeTask(
name="sql.snowflake.w_io",
# Define inputs as well as their types that can be used to customize the query.
inputs=kwtypes(nation_key=int),
task_config=SnowflakeConfig(
account="<SNOWFLAKE_ACCOUNT_ID>",
database="SNOWFLAKE_SAMPLE_DATA",
schema="TPCH_SF1000",
warehouse="COMPUTE_WH",
),
query_template="SELECT * from CUSTOMER where C_NATIONKEY = {{ .inputs.nation_key }} limit 100",
)
@workflow
def snowflake_wf(nation_key: int):
return snowflake_task_templatized_query(nation_key=nation_key)
To review the query results, access the Snowflake console at:
https://<SNOWFLAKE_ACCOUNT_ID>.snowflakecomputing.com/console#/monitoring/queries/detail
.
You can also execute the task and workflow locally.
if __name__ == "__main__":
print(snowflake_task_no_io())
print(snowflake_wf(nation_key=10))