flytekitplugins.omegaconf.dictconfig_transformer
Directory
Classes
Class | Description |
---|---|
DictConfigTransformer |
Base transformer type that should be implemented for every python native type that can be handled by flytekit. |
Methods
Method | Description |
---|---|
check_if_valid_dictconfig() |
Validate the DictConfig to ensure it’s serializable. |
create_struct() |
Create a protobuf Struct object from type and value maps. |
extract_type_and_value_maps() |
Extract type and value maps from the DictConfig. |
handle_base_dataclass() |
Handle the base dataclass and create the DictConfig. |
is_flattenable() |
Check if a DictConfig can be properly flattened and unflattened, i. |
parse_node_value() |
Parse the node value from the nested dictionary. |
parse_type_description() |
Parse the type description and return the corresponding type. |
Variables
Property | Type | Description |
---|---|---|
T |
TypeVar |
Methods
check_if_valid_dictconfig()
def check_if_valid_dictconfig(
python_val: omegaconf.dictconfig.DictConfig,
)
Validate the DictConfig to ensure it’s serializable.
Parameter | Type |
---|---|
python_val |
omegaconf.dictconfig.DictConfig |
create_struct()
def create_struct(
type_map: typing.Dict[str, str],
value_map: typing.Dict[str, typing.Any],
base_config: typing.Type,
) -> google.protobuf.struct_pb2.Struct
Create a protobuf Struct object from type and value maps.
Parameter | Type |
---|---|
type_map |
typing.Dict[str, str] |
value_map |
typing.Dict[str, typing.Any] |
base_config |
typing.Type |
extract_type_and_value_maps()
def extract_type_and_value_maps(
ctx: flytekit.core.context_manager.FlyteContext,
python_val: omegaconf.dictconfig.DictConfig,
) -> (typing.Dict[str, str], typing.Dict[str, typing.Any])
Extract type and value maps from the DictConfig.
Parameter | Type |
---|---|
ctx |
flytekit.core.context_manager.FlyteContext |
python_val |
omegaconf.dictconfig.DictConfig |
handle_base_dataclass()
def handle_base_dataclass(
ctx: flytekit.core.context_manager.FlyteContext,
nested_dict: typing.Dict[str, typing.Any],
cfg_dict: typing.Dict[str, typing.Any],
) -> omegaconf.dictconfig.DictConfig
Handle the base dataclass and create the DictConfig.
Parameter | Type |
---|---|
ctx |
flytekit.core.context_manager.FlyteContext |
nested_dict |
typing.Dict[str, typing.Any] |
cfg_dict |
typing.Dict[str, typing.Any] |
is_flattenable()
def is_flattenable(
d: omegaconf.dictconfig.DictConfig,
) -> bool
Check if a DictConfig can be properly flattened and unflattened, i.e. keys do not contain dots.
Parameter | Type |
---|---|
d |
omegaconf.dictconfig.DictConfig |
parse_node_value()
def parse_node_value(
ctx: flytekit.core.context_manager.FlyteContext,
key: str,
type_desc: str,
nested_dict: typing.Dict[str, typing.Any],
) -> typing.Any
Parse the node value from the nested dictionary.
Parameter | Type |
---|---|
ctx |
flytekit.core.context_manager.FlyteContext |
key |
str |
type_desc |
str |
nested_dict |
typing.Dict[str, typing.Any] |
parse_type_description()
def parse_type_description(
type_desc: str,
) -> typing.Type
Parse the type description and return the corresponding type.
Parameter | Type |
---|---|
type_desc |
str |
flytekitplugins.omegaconf.dictconfig_transformer.DictConfigTransformer
Base transformer type that should be implemented for every python native type that can be handled by flytekit
def DictConfigTransformer()
Construct DictConfigTransformer.
Methods
Method | Description |
---|---|
assert_type() |
|
from_binary_idl() |
This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access. |
from_generic_idl() |
TODO: Support all Flyte Types. |
get_literal_type() |
Provide type hint for Flytekit type system. |
guess_python_type() |
Converts the Flyte LiteralType to a python object type. |
isinstance_generic() |
|
to_html() |
Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div. |
to_literal() |
Convert from given python type object DictConfig to the Literal representation. |
to_python_value() |
Re-hydrate the custom object from Flyte Literal value. |
assert_type()
def assert_type(
t: Type[T],
v: T,
)
Parameter | Type |
---|---|
t |
Type[T] |
v |
T |
from_binary_idl()
def from_binary_idl(
binary_idl_object: Binary,
expected_python_type: Type[T],
) -> Optional[T]
This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.`
For untyped dict, dataclass, and pydantic basemodel: Life Cycle (Untyped Dict as example): python val -> msgpack bytes -> binary literal scalar -> msgpack bytes -> python val (to_literal) (from_binary_idl)
For attribute access: Life Cycle: python val -> msgpack bytes -> binary literal scalar -> resolved golang value -> binary literal scalar -> msgpack bytes -> python val (to_literal) (propeller attribute access) (from_binary_idl)
Parameter | Type |
---|---|
binary_idl_object |
Binary |
expected_python_type |
Type[T] |
from_generic_idl()
def from_generic_idl(
generic: Struct,
expected_python_type: Type[T],
) -> Optional[T]
TODO: Support all Flyte Types. This is for dataclass attribute access from input created from the Flyte Console.
Note:
- This can be removed in the future when the Flyte Console support generate Binary IDL Scalar as input.
Parameter | Type |
---|---|
generic |
Struct |
expected_python_type |
Type[T] |
get_literal_type()
def get_literal_type(
t: typing.Type[omegaconf.dictconfig.DictConfig],
) -> flytekit.models.types.LiteralType
Provide type hint for Flytekit type system.
To support the multivariate typing of nodes in a DictConfig, we encode them as binaries (no introspection) with multiple files.
Parameter | Type |
---|---|
t |
typing.Type[omegaconf.dictconfig.DictConfig] |
guess_python_type()
def guess_python_type(
literal_type: LiteralType,
) -> Type[T]
Converts the Flyte LiteralType to a python object type.
Parameter | Type |
---|---|
literal_type |
LiteralType |
isinstance_generic()
def isinstance_generic(
obj,
generic_alias,
)
Parameter | Type |
---|---|
obj |
|
generic_alias |
to_html()
def to_html(
ctx: FlyteContext,
python_val: T,
expected_python_type: Type[T],
) -> str
Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div
Parameter | Type |
---|---|
ctx |
FlyteContext |
python_val |
T |
expected_python_type |
Type[T] |
to_literal()
def to_literal(
ctx: flytekit.core.context_manager.FlyteContext,
python_val: ~T,
python_type: typing.Type[~T],
expected: flytekit.models.types.LiteralType,
) -> flytekit.models.literals.Literal
Convert from given python type object DictConfig
to the Literal representation.
Parameter | Type |
---|---|
ctx |
flytekit.core.context_manager.FlyteContext |
python_val |
~T |
python_type |
typing.Type[~T] |
expected |
flytekit.models.types.LiteralType |
to_python_value()
def to_python_value(
ctx: flytekit.core.context_manager.FlyteContext,
lv: flytekit.models.literals.Literal,
expected_python_type: typing.Type[omegaconf.dictconfig.DictConfig],
) -> omegaconf.dictconfig.DictConfig
Re-hydrate the custom object from Flyte Literal value.
Parameter | Type |
---|---|
ctx |
flytekit.core.context_manager.FlyteContext |
lv |
flytekit.models.literals.Literal |
expected_python_type |
typing.Type[omegaconf.dictconfig.DictConfig] |
Properties
Property | Type | Description |
---|---|---|
is_async |
||
name |
||
python_type |
This returns the python type |
|
type_assertions_enabled |
Indicates if the transformer wants type assertions to be enabled at the core type engine layer |