0.1.dev2192+g7c539c3.d20250403
flytekit.types.structured.basic_dfs
Directory
Classes
Methods
Variables
Property |
Type |
Description |
CSV |
str |
|
PARQUET |
str |
|
T |
TypeVar |
|
Methods
get_pandas_storage_options()
def get_pandas_storage_options(
uri: str,
data_config: flytekit.configuration.DataConfig,
anonymous: bool,
) -> typing.Optional[typing.Dict]
Parameter |
Type |
uri |
str |
data_config |
flytekit.configuration.DataConfig |
anonymous |
bool |
flytekit.types.structured.basic_dfs.ArrowToParquetEncodingHandler
Helper class that provides a standard way to create an ABC using
inheritance.
def ArrowToParquetEncodingHandler()
Extend this abstract class, implement the encode function, and register your concrete class with the
StructuredDatasetTransformerEngine class in order for the core flytekit type engine to handle
dataframe libraries. This is the encoding interface, meaning it is used when there is a Python value that the
flytekit type engine is trying to convert into a Flyte Literal. For the other way, see
the StructuredDatasetEncoder
Methods
Method |
Description |
encode() |
Even if the user code returns a plain dataframe instance, the dataset transformer engine will wrap the. |
encode()
def encode(
ctx: flytekit.core.context_manager.FlyteContext,
structured_dataset: flytekit.types.structured.structured_dataset.StructuredDataset,
structured_dataset_type: flytekit.models.types.StructuredDatasetType,
) -> n: This function should return a StructuredDataset literal object. Do not confuse this with the
Even if the user code returns a plain dataframe instance, the dataset transformer engine will wrap the
incoming dataframe with defaults set for that dataframe
type. This simplifies this function’s interface as a lot of data that could be specified by the user using
the
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
structured_dataset |
flytekit.types.structured.structured_dataset.StructuredDataset |
structured_dataset_type |
flytekit.models.types.StructuredDatasetType |
Properties
Property |
Type |
Description |
protocol |
|
|
python_type |
|
|
supported_format |
|
|
flytekit.types.structured.basic_dfs.CSVToPandasDecodingHandler
Helper class that provides a standard way to create an ABC using
inheritance.
def CSVToPandasDecodingHandler()
Extend this abstract class, implement the decode function, and register your concrete class with the
StructuredDatasetTransformerEngine class in order for the core flytekit type engine to handle
dataframe libraries. This is the decoder interface, meaning it is used when there is a Flyte Literal value,
and we have to get a Python value out of it. For the other way, see the StructuredDatasetEncoder
Methods
Method |
Description |
decode() |
This is code that will be called by the dataset transformer engine to ultimately translate from a Flyte Literal. |
decode()
def decode(
ctx: flytekit.core.context_manager.FlyteContext,
flyte_value: flytekit.models.literals.StructuredDataset,
current_task_metadata: flytekit.models.literals.StructuredDatasetMetadata,
) -> n: This function can either return an instance of the dataframe that this decoder handles, or an iterator
This is code that will be called by the dataset transformer engine to ultimately translate from a Flyte Literal
value into a Python instance.
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
flyte_value |
flytekit.models.literals.StructuredDataset |
current_task_metadata |
flytekit.models.literals.StructuredDatasetMetadata |
Properties
Property |
Type |
Description |
protocol |
|
|
python_type |
|
|
supported_format |
|
|
flytekit.types.structured.basic_dfs.PandasToCSVEncodingHandler
Helper class that provides a standard way to create an ABC using
inheritance.
def PandasToCSVEncodingHandler()
Extend this abstract class, implement the encode function, and register your concrete class with the
StructuredDatasetTransformerEngine class in order for the core flytekit type engine to handle
dataframe libraries. This is the encoding interface, meaning it is used when there is a Python value that the
flytekit type engine is trying to convert into a Flyte Literal. For the other way, see
the StructuredDatasetEncoder
Methods
Method |
Description |
encode() |
Even if the user code returns a plain dataframe instance, the dataset transformer engine will wrap the. |
encode()
def encode(
ctx: flytekit.core.context_manager.FlyteContext,
structured_dataset: flytekit.types.structured.structured_dataset.StructuredDataset,
structured_dataset_type: flytekit.models.types.StructuredDatasetType,
) -> n: This function should return a StructuredDataset literal object. Do not confuse this with the
Even if the user code returns a plain dataframe instance, the dataset transformer engine will wrap the
incoming dataframe with defaults set for that dataframe
type. This simplifies this function’s interface as a lot of data that could be specified by the user using
the
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
structured_dataset |
flytekit.types.structured.structured_dataset.StructuredDataset |
structured_dataset_type |
flytekit.models.types.StructuredDatasetType |
Properties
Property |
Type |
Description |
protocol |
|
|
python_type |
|
|
supported_format |
|
|
flytekit.types.structured.basic_dfs.PandasToParquetEncodingHandler
Helper class that provides a standard way to create an ABC using
inheritance.
def PandasToParquetEncodingHandler()
Extend this abstract class, implement the encode function, and register your concrete class with the
StructuredDatasetTransformerEngine class in order for the core flytekit type engine to handle
dataframe libraries. This is the encoding interface, meaning it is used when there is a Python value that the
flytekit type engine is trying to convert into a Flyte Literal. For the other way, see
the StructuredDatasetEncoder
Methods
Method |
Description |
encode() |
Even if the user code returns a plain dataframe instance, the dataset transformer engine will wrap the. |
encode()
def encode(
ctx: flytekit.core.context_manager.FlyteContext,
structured_dataset: flytekit.types.structured.structured_dataset.StructuredDataset,
structured_dataset_type: flytekit.models.types.StructuredDatasetType,
) -> n: This function should return a StructuredDataset literal object. Do not confuse this with the
Even if the user code returns a plain dataframe instance, the dataset transformer engine will wrap the
incoming dataframe with defaults set for that dataframe
type. This simplifies this function’s interface as a lot of data that could be specified by the user using
the
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
structured_dataset |
flytekit.types.structured.structured_dataset.StructuredDataset |
structured_dataset_type |
flytekit.models.types.StructuredDatasetType |
Properties
Property |
Type |
Description |
protocol |
|
|
python_type |
|
|
supported_format |
|
|
flytekit.types.structured.basic_dfs.ParquetToArrowDecodingHandler
Helper class that provides a standard way to create an ABC using
inheritance.
def ParquetToArrowDecodingHandler()
Extend this abstract class, implement the decode function, and register your concrete class with the
StructuredDatasetTransformerEngine class in order for the core flytekit type engine to handle
dataframe libraries. This is the decoder interface, meaning it is used when there is a Flyte Literal value,
and we have to get a Python value out of it. For the other way, see the StructuredDatasetEncoder
Methods
Method |
Description |
decode() |
This is code that will be called by the dataset transformer engine to ultimately translate from a Flyte Literal. |
decode()
def decode(
ctx: flytekit.core.context_manager.FlyteContext,
flyte_value: flytekit.models.literals.StructuredDataset,
current_task_metadata: flytekit.models.literals.StructuredDatasetMetadata,
) -> n: This function can either return an instance of the dataframe that this decoder handles, or an iterator
This is code that will be called by the dataset transformer engine to ultimately translate from a Flyte Literal
value into a Python instance.
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
flyte_value |
flytekit.models.literals.StructuredDataset |
current_task_metadata |
flytekit.models.literals.StructuredDatasetMetadata |
Properties
Property |
Type |
Description |
protocol |
|
|
python_type |
|
|
supported_format |
|
|
flytekit.types.structured.basic_dfs.ParquetToPandasDecodingHandler
Helper class that provides a standard way to create an ABC using
inheritance.
def ParquetToPandasDecodingHandler()
Extend this abstract class, implement the decode function, and register your concrete class with the
StructuredDatasetTransformerEngine class in order for the core flytekit type engine to handle
dataframe libraries. This is the decoder interface, meaning it is used when there is a Flyte Literal value,
and we have to get a Python value out of it. For the other way, see the StructuredDatasetEncoder
Methods
Method |
Description |
decode() |
This is code that will be called by the dataset transformer engine to ultimately translate from a Flyte Literal. |
decode()
def decode(
ctx: flytekit.core.context_manager.FlyteContext,
flyte_value: flytekit.models.literals.StructuredDataset,
current_task_metadata: flytekit.models.literals.StructuredDatasetMetadata,
) -> n: This function can either return an instance of the dataframe that this decoder handles, or an iterator
This is code that will be called by the dataset transformer engine to ultimately translate from a Flyte Literal
value into a Python instance.
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
flyte_value |
flytekit.models.literals.StructuredDataset |
current_task_metadata |
flytekit.models.literals.StructuredDatasetMetadata |
Properties
Property |
Type |
Description |
protocol |
|
|
python_type |
|
|
supported_format |
|
|