flytekit.types.schema.types_pandas
Transforms a pd.DataFrame to Schema without column types.
def PandasDataFrameTransformer()
def assert_type(
t: Type[T],
v: T,
)
| Parameter |
Type |
Description |
t |
Type[T] |
|
v |
T |
|
def async_to_literal(
ctx: flytekit.core.context_manager.FlyteContext,
python_val: pandas.core.frame.DataFrame,
python_type: typing.Type[pandas.core.frame.DataFrame],
expected: flytekit.models.types.LiteralType,
) -> flytekit.models.literals.Literal
Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these
do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating
what was the mismatch
| Parameter |
Type |
Description |
ctx |
flytekit.core.context_manager.FlyteContext |
A FlyteContext, useful in accessing the filesystem and other attributes |
python_val |
pandas.core.frame.DataFrame |
The actual value to be transformed |
python_type |
typing.Type[pandas.core.frame.DataFrame] |
The assumed type of the value (this matches the declared type on the function) |
expected |
flytekit.models.types.LiteralType |
Expected Literal Type |
def async_to_python_value(
ctx: flytekit.core.context_manager.FlyteContext,
lv: flytekit.models.literals.Literal,
expected_python_type: typing.Type[pandas.core.frame.DataFrame],
) -> pandas.core.frame.DataFrame
Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised
| Parameter |
Type |
Description |
ctx |
flytekit.core.context_manager.FlyteContext |
FlyteContext |
lv |
flytekit.models.literals.Literal |
The received literal Value |
expected_python_type |
typing.Type[pandas.core.frame.DataFrame] |
Expected native python type that should be returned |
def from_binary_idl(
binary_idl_object: Binary,
expected_python_type: Type[T],
) -> Optional[T]
This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.`
For untyped dict, dataclass, and pydantic basemodel:
Life Cycle (Untyped Dict as example):
python val -> msgpack bytes -> binary literal scalar -> msgpack bytes -> python val
(to_literal) (from_binary_idl)
For attribute access:
Life Cycle:
python val -> msgpack bytes -> binary literal scalar -> resolved golang value -> binary literal scalar -> msgpack bytes -> python val
(to_literal) (propeller attribute access) (from_binary_idl)
| Parameter |
Type |
Description |
binary_idl_object |
Binary |
|
expected_python_type |
Type[T] |
|
def from_generic_idl(
generic: Struct,
expected_python_type: Type[T],
) -> Optional[T]
TODO: Support all Flyte Types.
This is for dataclass attribute access from input created from the Flyte Console.
Note:
- This can be removed in the future when the Flyte Console support generate Binary IDL Scalar as input.
| Parameter |
Type |
Description |
generic |
Struct |
|
expected_python_type |
Type[T] |
|
def get_literal_type(
t: typing.Type[pandas.core.frame.DataFrame],
) -> flytekit.models.types.LiteralType
Converts the python type to a Flyte LiteralType
| Parameter |
Type |
Description |
t |
typing.Type[pandas.core.frame.DataFrame] |
|
def guess_python_type(
literal_type: LiteralType,
) -> Type[T]
Converts the Flyte LiteralType to a python object type.
| Parameter |
Type |
Description |
literal_type |
LiteralType |
|
def isinstance_generic(
obj,
generic_alias,
)
| Parameter |
Type |
Description |
obj |
|
|
generic_alias |
|
|
def to_html(
ctx: flytekit.core.context_manager.FlyteContext,
python_val: pandas.core.frame.DataFrame,
expected_python_type: typing.Type[~T],
)
Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div
| Parameter |
Type |
Description |
ctx |
flytekit.core.context_manager.FlyteContext |
|
python_val |
pandas.core.frame.DataFrame |
|
expected_python_type |
typing.Type[~T] |
|
def to_literal(
ctx: FlyteContext,
python_val: typing.Any,
python_type: Type[T],
expected: LiteralType,
) -> Literal
Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these
do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating
what was the mismatch
| Parameter |
Type |
Description |
ctx |
FlyteContext |
A FlyteContext, useful in accessing the filesystem and other attributes |
python_val |
typing.Any |
The actual value to be transformed |
python_type |
Type[T] |
The assumed type of the value (this matches the declared type on the function) |
expected |
LiteralType |
Expected Literal Type |
def to_python_value(
ctx: FlyteContext,
lv: Literal,
expected_python_type: Type[T],
) -> Optional[T]
Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised
| Parameter |
Type |
Description |
ctx |
FlyteContext |
FlyteContext |
lv |
Literal |
The received literal Value |
expected_python_type |
Type[T] |
Expected native python type that should be returned |
| Property |
Type |
Description |
is_async |
|
|
name |
|
|
python_type |
|
This returns the python type
|
type_assertions_enabled |
|
Indicates if the transformer wants type assertions to be enabled at the core type engine layer
|
Base SchemaReader to handle any readers (that can manage their own IO or otherwise)
Use the simplified base LocalIOSchemaReader for non distributed dataframes
class PandasSchemaReader(
local_dir: str,
cols: typing.Optional[typing.Dict[str, type]],
fmt: <enum 'SchemaFormat'>,
)
| Parameter |
Type |
Description |
local_dir |
str |
|
cols |
typing.Optional[typing.Dict[str, type]] |
|
fmt |
<enum 'SchemaFormat'> |
|
| Parameter |
Type |
Description |
kwargs |
**kwargs |
|
def iter(
kwargs,
) -> typing.Generator[T, None, None]
| Parameter |
Type |
Description |
kwargs |
**kwargs |
|
| Property |
Type |
Description |
column_names |
|
|
from_path |
|
|
Abstract base class for generic types.
On Python 3.12 and newer, generic classes implicitly inherit from
Generic when they declare a parameter list after the class’s name::
class Mapping[KT, VT]:
def __getitem__(self, key: KT) -> VT:
...
# Etc.
On older versions of Python, however, generic classes have to
explicitly inherit from Generic.
After a class has been declared to be generic, it can then be used as
follows::
def lookup_name[KT, VT](mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
try:
return mapping[key]
except KeyError:
return default
class PandasSchemaWriter(
local_dir: str,
cols: typing.Optional[typing.Dict[str, type]],
fmt: <enum 'SchemaFormat'>,
)
| Parameter |
Type |
Description |
local_dir |
str |
|
cols |
typing.Optional[typing.Dict[str, type]] |
|
fmt |
<enum 'SchemaFormat'> |
|
def write(
dfs,
kwargs,
)
| Parameter |
Type |
Description |
dfs |
|
|
kwargs |
**kwargs |
|
| Property |
Type |
Description |
column_names |
|
|
to_path |
|
|
| Method |
Description |
read() |
|
write() |
Writes data frame as a chunk to the local directory owned by the Schema object. |
def read(
files: os.PathLike,
columns: typing.Optional[typing.List[str]],
kwargs,
) -> pandas.core.frame.DataFrame
| Parameter |
Type |
Description |
files |
os.PathLike |
|
columns |
typing.Optional[typing.List[str]] |
|
kwargs |
**kwargs |
|
def write(
df: pandas.core.frame.DataFrame,
to_file: os.PathLike,
coerce_timestamps: str,
allow_truncated_timestamps: bool,
kwargs,
)
Writes data frame as a chunk to the local directory owned by the Schema object. Will later be uploaded to s3.
| Parameter |
Type |
Description |
df |
pandas.core.frame.DataFrame |
data frame to write as parquet |
to_file |
os.PathLike |
Sink file to write the dataframe to |
coerce_timestamps |
str |
format to store timestamp in parquet. ‘us’, ‘ms’, ’s’ are allowed values. Note: if your timestamps will lose data due to the coercion, your write will fail! Nanoseconds are problematic in the Parquet format and will not work. See allow_truncated_timestamps. |
allow_truncated_timestamps |
bool |
default False. Allow truncation when coercing timestamps to a coarser resolution. |
kwargs |
**kwargs |
|