1.15.4.dev2+g3e3ce2426

flytekit.types.schema.types

Directory

Classes

Class Description
AsyncTypeTransformer Base transformer type that should be implemented for every python native type that can be handled by flytekit.
Binary None.
DataClassJSONMixin None.
Enum Create a collection of name/value pairs.
FlyteContext This is an internal-facing context object, that most users will not have to deal with.
FlyteContextManager FlyteContextManager manages the execution context within Flytekit.
FlyteSchema None.
FlyteSchemaTransformer Base transformer type that should be implemented for every python native type that can be handled by flytekit.
Literal None.
LiteralType None.
LocalIOSchemaReader Base SchemaReader to handle any readers (that can manage their own IO or otherwise).
LocalIOSchemaWriter Abstract base class for generic types.
Path PurePath subclass that can make system calls.
Scalar None.
Schema None.
SchemaEngine This is the core Engine that handles all schema sub-systems.
SchemaFormat Represents the schema storage format (at rest).
SchemaHandler None.
SchemaOpenMode Create a collection of name/value pairs.
SchemaReader Base SchemaReader to handle any readers (that can manage their own IO or otherwise).
SchemaType None.
SchemaWriter Abstract base class for generic types.
SerializableType None.
Struct A ProtocolMessage.
TypeEngine Core Extensible TypeEngine of Flytekit.

Errors

flytekit.types.schema.types.AsyncTypeTransformer

Base transformer type that should be implemented for every python native type that can be handled by flytekit

def AsyncTypeTransformer(
    name: str,
    t: Type[T],
    enable_type_assertions: bool,
):
Parameter Type
name str
t Type[T]
enable_type_assertions bool

Methods

Method Description
assert_type() None
async_to_literal() Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type
async_to_python_value() Converts the given Literal to a Python Type
from_binary_idl() This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access
from_generic_idl() TODO: Support all Flyte Types
get_literal_type() Converts the python type to a Flyte LiteralType
guess_python_type() Converts the Flyte LiteralType to a python object type
isinstance_generic() None
to_html() Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div
to_literal() Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type
to_python_value() Converts the given Literal to a Python Type

assert_type()

def assert_type(
    t: Type[T],
    v: T,
):
Parameter Type
t Type[T]
v T

async_to_literal()

def async_to_literal(
    ctx: FlyteContext,
    python_val: T,
    python_type: Type[T],
    expected: LiteralType,
):

Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type. Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating what was the mismatch

Parameter Type
ctx FlyteContext
python_val T
python_type Type[T]
expected LiteralType

async_to_python_value()

def async_to_python_value(
    ctx: FlyteContext,
    lv: Literal,
    expected_python_type: Type[T],
):

Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised

Parameter Type
ctx FlyteContext
lv Literal
expected_python_type Type[T]

from_binary_idl()

def from_binary_idl(
    binary_idl_object: Binary,
    expected_python_type: Type[T],
):

This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.ï½€

For untyped dict, dataclass, and pydantic basemodel: Life Cycle (Untyped Dict as example): python val -> msgpack bytes -> binary literal scalar -> msgpack bytes -> python val (to_literal) (from_binary_idl)

For attribute access: Life Cycle: python val -> msgpack bytes -> binary literal scalar -> resolved golang value -> binary literal scalar -> msgpack bytes -> python val (to_literal) (propeller attribute access) (from_binary_idl)

Parameter Type
binary_idl_object Binary
expected_python_type Type[T]

from_generic_idl()

def from_generic_idl(
    generic: Struct,
    expected_python_type: Type[T],
):

TODO: Support all Flyte Types. This is for dataclass attribute access from input created from the Flyte Console.

Note:

  • This can be removed in the future when the Flyte Console support generate Binary IDL Scalar as input.
Parameter Type
generic Struct
expected_python_type Type[T]

get_literal_type()

def get_literal_type(
    t: Type[T],
):

Converts the python type to a Flyte LiteralType

Parameter Type
t Type[T]

guess_python_type()

def guess_python_type(
    literal_type: LiteralType,
):

Converts the Flyte LiteralType to a python object type.

Parameter Type
literal_type LiteralType

isinstance_generic()

def isinstance_generic(
    obj,
    generic_alias,
):
Parameter Type
obj
generic_alias

to_html()

def to_html(
    ctx: FlyteContext,
    python_val: T,
    expected_python_type: Type[T],
):

Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div

Parameter Type
ctx FlyteContext
python_val T
expected_python_type Type[T]

to_literal()

def to_literal(
    ctx: FlyteContext,
    python_val: typing.Any,
    python_type: Type[T],
    expected: LiteralType,
):

Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type. Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating what was the mismatch

Parameter Type
ctx FlyteContext
python_val typing.Any
python_type Type[T]
expected LiteralType

to_python_value()

def to_python_value(
    ctx: FlyteContext,
    lv: Literal,
    expected_python_type: Type[T],
):

Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised

Parameter Type
ctx FlyteContext
lv Literal
expected_python_type Type[T]

Properties

Property Type Description
is_async
name
python_type
type_assertions_enabled

flytekit.types.schema.types.Binary

def Binary(
    value,
    tag,
):
Parameter Type
value
tag

Methods

Method Description
from_flyte_idl()
serialize_to_string() None
short_string()
to_flyte_idl()
verbose_string()

from_flyte_idl()

def from_flyte_idl(
    pb2_object,
):
Parameter Type
pb2_object

serialize_to_string()

def serialize_to_string()

short_string()

def short_string()

to_flyte_idl()

def to_flyte_idl()

verbose_string()

def verbose_string()

Properties

Property Type Description
is_empty
tag
value

flytekit.types.schema.types.DataClassJSONMixin

Methods

Method Description
from_dict() None
from_json() None
to_dict() None
to_json() None

from_dict()

def from_dict(
    d,
    dialect,
):
Parameter Type
d
dialect

from_json()

def from_json(
    data: typing.Union[str, bytes, bytearray],
    decoder: collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]],
    from_dict_kwargs: typing.Any,
):
Parameter Type
data typing.Union[str, bytes, bytearray]
decoder collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]]
from_dict_kwargs typing.Any

to_dict()

def to_dict()

to_json()

def to_json(
    encoder: collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]],
    to_dict_kwargs: typing.Any,
):
Parameter Type
encoder collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]]
to_dict_kwargs typing.Any

flytekit.types.schema.types.Enum

Create a collection of name/value pairs.

Example enumeration:

class Color(Enum): … RED = 1 … BLUE = 2 … GREEN = 3

Access them by:

  • attribute access:

Color.RED <Color.RED: 1>

  • value lookup:

Color(1) <Color.RED: 1>

  • name lookup:

Color[‘RED’] <Color.RED: 1>

Enumerations can be iterated over, and know how many members they have:

len(Color) 3

list(Color) [<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own attributes – see the documentation for details.

flytekit.types.schema.types.FlyteContext

This is an internal-facing context object, that most users will not have to deal with. It’s essentially a globally available grab bag of settings and objects that allows flytekit to do things like convert complex types, run and compile workflows, serialize Flyte entities, etc.

Even though this object as a current_context function on it, it should not be called directly. Please use the :py:class:flytekit.FlyteContextManager object instead.

Please do not confuse this object with the :py:class:flytekit.ExecutionParameters object.

def FlyteContext(
    file_access: FileAccessProvider,
    level: int,
    flyte_client: Optional['friendly_client.SynchronousFlyteClient'],
    compilation_state: Optional[CompilationState],
    execution_state: Optional[ExecutionState],
    serialization_settings: Optional[SerializationSettings],
    in_a_condition: bool,
    origin_stackframe: Optional[traceback.FrameSummary],
    output_metadata_tracker: Optional[OutputMetadataTracker],
    worker_queue: Optional[Controller],
):
Parameter Type
file_access FileAccessProvider
level int
flyte_client Optional['friendly_client.SynchronousFlyteClient']
compilation_state Optional[CompilationState]
execution_state Optional[ExecutionState]
serialization_settings Optional[SerializationSettings]
in_a_condition bool
origin_stackframe Optional[traceback.FrameSummary]
output_metadata_tracker Optional[OutputMetadataTracker]
worker_queue Optional[Controller]

Methods

Method Description
current_context() This method exists only to maintain backwards compatibility
enter_conditional_section() None
get_deck() Returns the deck that was created as part of the last execution
get_origin_stackframe_repr() None
new_builder() None
new_compilation_state() Creates and returns a default compilation state
new_execution_state() Creates and returns a new default execution state
set_stackframe() None
with_client() None
with_compilation_state() None
with_execution_state() None
with_file_access() None
with_new_compilation_state() None
with_output_metadata_tracker() None
with_serialization_settings() None
with_worker_queue() None

current_context()

def current_context()

This method exists only to maintain backwards compatibility. Please use FlyteContextManager.current_context() instead.

Users of flytekit should be wary not to confuse the object returned from this function with :py:func:flytekit.current_context

enter_conditional_section()

def enter_conditional_section()

get_deck()

def get_deck()

Returns the deck that was created as part of the last execution.

The return value depends on the execution environment. In a notebook, the return value is compatible with IPython.display and should be rendered in the notebook.

.. code-block:: python

with flytekit.new_context() as ctx: my_task(…) ctx.get_deck()

OR if you wish to explicitly display

.. code-block:: python

from IPython import display display(ctx.get_deck())

get_origin_stackframe_repr()

def get_origin_stackframe_repr()

new_builder()

def new_builder()

new_compilation_state()

def new_compilation_state(
    prefix: str,
):

Creates and returns a default compilation state. For most of the code this should be the entrypoint of compilation, otherwise the code should always uses - with_compilation_state

Parameter Type
prefix str

new_execution_state()

def new_execution_state(
    working_dir: Optional[os.PathLike],
):

Creates and returns a new default execution state. This should be used at the entrypoint of execution, in all other cases it is preferable to use with_execution_state

Parameter Type
working_dir Optional[os.PathLike]

set_stackframe()

def set_stackframe(
    s: traceback.FrameSummary,
):
Parameter Type
s traceback.FrameSummary

with_client()

def with_client(
    c: SynchronousFlyteClient,
):
Parameter Type
c SynchronousFlyteClient

with_compilation_state()

def with_compilation_state(
    c: CompilationState,
):
Parameter Type
c CompilationState

with_execution_state()

def with_execution_state(
    es: ExecutionState,
):
Parameter Type
es ExecutionState

with_file_access()

def with_file_access(
    fa: FileAccessProvider,
):
Parameter Type
fa FileAccessProvider

with_new_compilation_state()

def with_new_compilation_state()

with_output_metadata_tracker()

def with_output_metadata_tracker(
    t: OutputMetadataTracker,
):
Parameter Type
t OutputMetadataTracker

with_serialization_settings()

def with_serialization_settings(
    ss: SerializationSettings,
):
Parameter Type
ss SerializationSettings

with_worker_queue()

def with_worker_queue(
    wq: Controller,
):
Parameter Type
wq Controller

Properties

Property Type Description
user_space_params

flytekit.types.schema.types.FlyteContextManager

FlyteContextManager manages the execution context within Flytekit. It holds global state of either compilation or Execution. It is not thread-safe and can only be run as a single threaded application currently. Context’s within Flytekit is useful to manage compilation state and execution state. Refer to CompilationState and ExecutionState for more information. FlyteContextManager provides a singleton stack to manage these contexts.

Typical usage is

.. code-block:: python

FlyteContextManager.initialize() with FlyteContextManager.with_context(o) as ctx: pass

If required - not recommended you can use

FlyteContextManager.push_context()

but correspondingly a pop_context should be called

FlyteContextManager.pop_context()

Methods

Method Description
add_signal_handler() None
current_context() None
get_origin_stackframe() None
initialize() Re-initializes the context and erases the entire context
pop_context() None
push_context() None
size() None
with_context() None

add_signal_handler()

def add_signal_handler(
    handler: typing.Callable[[int, FrameType], typing.Any],
):
Parameter Type
handler typing.Callable[[int, FrameType], typing.Any]

current_context()

def current_context()

get_origin_stackframe()

def get_origin_stackframe(
    limit,
):
Parameter Type
limit

initialize()

def initialize()

Re-initializes the context and erases the entire context

pop_context()

def pop_context()

push_context()

def push_context(
    ctx: FlyteContext,
    f: Optional[traceback.FrameSummary],
):
Parameter Type
ctx FlyteContext
f Optional[traceback.FrameSummary]

size()

def size()

with_context()

def with_context(
    b: FlyteContext.Builder,
):
Parameter Type
b FlyteContext.Builder

flytekit.types.schema.types.FlyteSchema

def FlyteSchema(
    local_path: typing.Optional[str],
    remote_path: typing.Optional[str],
    supported_mode: SchemaOpenMode,
    downloader: typing.Optional[typing.Callable],
):
Parameter Type
local_path typing.Optional[str]
remote_path typing.Optional[str]
supported_mode SchemaOpenMode
downloader typing.Optional[typing.Callable]

Methods

Method Description
as_readonly() None
column_names() None
columns() None
deserialize_flyte_schema() None
format() None
from_dict() None
from_json() None
open() Returns a reader or writer depending on the mode of the object when created
serialize_flyte_schema() None
to_dict() None
to_json() None

as_readonly()

def as_readonly()

column_names()

def column_names()

columns()

def columns()

deserialize_flyte_schema()

def deserialize_flyte_schema(
    args,
    kwargs,
):
Parameter Type
args *args
kwargs **kwargs

format()

def format()

from_dict()

def from_dict(
    d,
    dialect,
):
Parameter Type
d
dialect

from_json()

def from_json(
    data: typing.Union[str, bytes, bytearray],
    decoder: collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]],
    from_dict_kwargs: typing.Any,
):
Parameter Type
data typing.Union[str, bytes, bytearray]
decoder collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]]
from_dict_kwargs typing.Any

open()

def open(
    dataframe_fmt: typing.Optional[type],
    override_mode: typing.Optional[SchemaOpenMode],
):

Returns a reader or writer depending on the mode of the object when created. This mode can be overridden, but will depend on whether the override can be performed. For example, if the Object was created in a read-mode a “write mode” override is not allowed. if the object was created in write-mode, a read is allowed.

Parameter Type
dataframe_fmt typing.Optional[type]
override_mode typing.Optional[SchemaOpenMode]

serialize_flyte_schema()

def serialize_flyte_schema(
    args,
    kwargs,
):
Parameter Type
args *args
kwargs **kwargs

to_dict()

def to_dict()

to_json()

def to_json(
    encoder: collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]],
    to_dict_kwargs: typing.Any,
):
Parameter Type
encoder collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]]
to_dict_kwargs typing.Any

Properties

Property Type Description
local_path
supported_mode

flytekit.types.schema.types.FlyteSchemaTransformer

Base transformer type that should be implemented for every python native type that can be handled by flytekit

def FlyteSchemaTransformer()

Methods

Method Description
assert_type() None
async_to_literal() Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type
async_to_python_value() Converts the given Literal to a Python Type
dict_to_flyte_schema() None
from_binary_idl() If the input is from flytekit, the Life Cycle will be as follows:
from_generic_idl() If the input is from Flyte Console, the Life Cycle will be as follows:
get_literal_type() Converts the python type to a Flyte LiteralType
guess_python_type() Converts the Flyte LiteralType to a python object type
isinstance_generic() None
to_html() Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div
to_literal() Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type
to_python_value() Converts the given Literal to a Python Type

assert_type()

def assert_type(
    t: Type[FlyteSchema],
    v: typing.Any,
):
Parameter Type
t Type[FlyteSchema]
v typing.Any

async_to_literal()

def async_to_literal(
    ctx: FlyteContext,
    python_val: FlyteSchema,
    python_type: Type[FlyteSchema],
    expected: LiteralType,
):

Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type. Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating what was the mismatch

Parameter Type
ctx FlyteContext
python_val FlyteSchema
python_type Type[FlyteSchema]
expected LiteralType

async_to_python_value()

def async_to_python_value(
    ctx: FlyteContext,
    lv: Literal,
    expected_python_type: Type[FlyteSchema],
):

Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised

Parameter Type
ctx FlyteContext
lv Literal
expected_python_type Type[FlyteSchema]

dict_to_flyte_schema()

def dict_to_flyte_schema(
    dict_obj: typing.Dict[str, str],
    expected_python_type: Type[FlyteSchema],
):
Parameter Type
dict_obj typing.Dict[str, str]
expected_python_type Type[FlyteSchema]

from_binary_idl()

def from_binary_idl(
    binary_idl_object: Binary,
    expected_python_type: Type[FlyteSchema],
):

If the input is from flytekit, the Life Cycle will be as follows:

Life Cycle: binary IDL -> resolved binary -> bytes -> expected Python object (flytekit customized (propeller processing) (flytekit binary IDL) (flytekit customized serialization) deserialization)

Example Code: @dataclass class DC: fs: FlyteSchema

@workflow def wf(dc: DC): t_fs(dc.fs)

Note:

  • The deserialization is the same as put a flyte schema in a dataclass, which will deserialize by the mashumaro’s API.

Related PR:

Parameter Type
binary_idl_object Binary
expected_python_type Type[FlyteSchema]

from_generic_idl()

def from_generic_idl(
    generic: Struct,
    expected_python_type: Type[FlyteSchema],
):

If the input is from Flyte Console, the Life Cycle will be as follows:

Life Cycle: json str -> protobuf struct -> resolved protobuf struct -> expected Python object (console user input) (console output) (propeller) (flytekit customized deserialization)

Example Code: @dataclass class DC: fs: FlyteSchema

@workflow def wf(dc: DC): t_fs(dc.fs)

Note:

  • The deserialization is the same as put a flyte schema in a dataclass, which will deserialize by the mashumaro’s API.

Related PR:

Parameter Type
generic Struct
expected_python_type Type[FlyteSchema]

get_literal_type()

def get_literal_type(
    t: Type[FlyteSchema],
):

Converts the python type to a Flyte LiteralType

Parameter Type
t Type[FlyteSchema]

guess_python_type()

def guess_python_type(
    literal_type: LiteralType,
):

Converts the Flyte LiteralType to a python object type.

Parameter Type
literal_type LiteralType

isinstance_generic()

def isinstance_generic(
    obj,
    generic_alias,
):
Parameter Type
obj
generic_alias

to_html()

def to_html(
    ctx: FlyteContext,
    python_val: T,
    expected_python_type: Type[T],
):

Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div

Parameter Type
ctx FlyteContext
python_val T
expected_python_type Type[T]

to_literal()

def to_literal(
    ctx: FlyteContext,
    python_val: typing.Any,
    python_type: Type[T],
    expected: LiteralType,
):

Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type. Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating what was the mismatch

Parameter Type
ctx FlyteContext
python_val typing.Any
python_type Type[T]
expected LiteralType

to_python_value()

def to_python_value(
    ctx: FlyteContext,
    lv: Literal,
    expected_python_type: Type[T],
):

Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised

Parameter Type
ctx FlyteContext
lv Literal
expected_python_type Type[T]

Properties

Property Type Description
is_async
name
python_type
type_assertions_enabled

flytekit.types.schema.types.Literal

def Literal(
    scalar: typing.Optional[flytekit.models.literals.Scalar],
    collection: typing.Optional[flytekit.models.literals.LiteralCollection],
    map: typing.Optional[flytekit.models.literals.LiteralMap],
    hash: typing.Optional[str],
    metadata: typing.Optional[typing.Dict[str, str]],
    offloaded_metadata: typing.Optional[flytekit.models.literals.LiteralOffloadedMetadata],
):

This IDL message represents a literal value in the Flyte ecosystem.

Parameter Type
scalar typing.Optional[flytekit.models.literals.Scalar]
collection typing.Optional[flytekit.models.literals.LiteralCollection]
map typing.Optional[flytekit.models.literals.LiteralMap]
hash typing.Optional[str]
metadata typing.Optional[typing.Dict[str, str]]
offloaded_metadata typing.Optional[flytekit.models.literals.LiteralOffloadedMetadata]

Methods

Method Description
from_flyte_idl()
serialize_to_string() None
set_metadata() Note: This is a mutation on the literal
short_string()
to_flyte_idl()
verbose_string()

from_flyte_idl()

def from_flyte_idl(
    pb2_object: flyteidl.core.literals_pb2.Literal,
):
Parameter Type
pb2_object flyteidl.core.literals_pb2.Literal

serialize_to_string()

def serialize_to_string()

set_metadata()

def set_metadata(
    metadata: typing.Dict[str, str],
):

Note: This is a mutation on the literal

Parameter Type
metadata typing.Dict[str, str]

short_string()

def short_string()

to_flyte_idl()

def to_flyte_idl()

verbose_string()

def verbose_string()

Properties

Property Type Description
collection
hash
is_empty
map
metadata
offloaded_metadata
scalar
value

flytekit.types.schema.types.LiteralType

def LiteralType(
    simple,
    schema,
    collection_type,
    map_value_type,
    blob,
    enum_type,
    union_type,
    structured_dataset_type,
    metadata,
    structure,
    annotation,
):

This is a oneof message, only one of the kwargs may be set, representing one of the Flyte types.

Parameter Type
simple
schema
collection_type
map_value_type
blob
enum_type
union_type
structured_dataset_type
metadata
structure
annotation

Methods

Method Description
from_flyte_idl()
serialize_to_string() None
short_string()
to_flyte_idl()
verbose_string()

from_flyte_idl()

def from_flyte_idl(
    proto,
):
Parameter Type
proto

serialize_to_string()

def serialize_to_string()

short_string()

def short_string()

to_flyte_idl()

def to_flyte_idl()

verbose_string()

def verbose_string()

Properties

Property Type Description
annotation
blob
collection_type
enum_type
is_empty
map_value_type
metadata
schema
simple
structure
structured_dataset_type
union_type

flytekit.types.schema.types.LocalIOSchemaReader

Base SchemaReader to handle any readers (that can manage their own IO or otherwise) Use the simplified base LocalIOSchemaReader for non distributed dataframes

def LocalIOSchemaReader(
    from_path: str,
    cols: typing.Optional[typing.Dict[str, type]],
    fmt: SchemaFormat,
):
Parameter Type
from_path str
cols typing.Optional[typing.Dict[str, type]]
fmt SchemaFormat

Methods

Method Description
all() None
iter() None

all()

def all(
    kwargs,
):
Parameter Type
kwargs **kwargs

iter()

def iter(
    kwargs,
):
Parameter Type
kwargs **kwargs

Properties

Property Type Description
column_names
from_path

flytekit.types.schema.types.LocalIOSchemaWriter

Abstract base class for generic types.

On Python 3.12 and newer, generic classes implicitly inherit from Generic when they declare a parameter list after the class’s name::

class Mapping[KT, VT]: def getitem(self, key: KT) -> VT: …

Etc.

On older versions of Python, however, generic classes have to explicitly inherit from Generic.

After a class has been declared to be generic, it can then be used as follows::

def lookup_name[KT, VT](mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: try: return mapping[key] except KeyError: return default

def LocalIOSchemaWriter(
    to_local_path: str,
    cols: typing.Optional[typing.Dict[str, type]],
    fmt: SchemaFormat,
):
Parameter Type
to_local_path str
cols typing.Optional[typing.Dict[str, type]]
fmt SchemaFormat

Methods

Method Description
write() None

write()

def write(
    dfs,
    kwargs,
):
Parameter Type
dfs
kwargs **kwargs

Properties

Property Type Description
column_names
to_path

flytekit.types.schema.types.Path

PurePath subclass that can make system calls.

Path represents a filesystem path but unlike PurePath, also offers methods to do system calls on path objects. Depending on your system, instantiating a Path will return either a PosixPath or a WindowsPath object. You can also instantiate a PosixPath or WindowsPath directly, but cannot instantiate a WindowsPath on a POSIX system or vice versa.

def Path(
    args,
    kwargs,
):
Parameter Type
args *args
kwargs **kwargs

Methods

Method Description
absolute() Return an absolute version of this path by prepending the current
as_posix() Return the string representation of the path with forward (/)
as_uri() Return the path as a ‘file’ URI
chmod() Change the permissions of the path, like os
cwd() Return a new path pointing to the current working directory
exists() Whether this path exists
expanduser() Return a new path with expanded ~ and ~user constructs
glob() Iterate over this subtree and yield all existing files (of any
group() Return the group name of the file gid
hardlink_to() Make this path a hard link pointing to the same file as target
home() Return a new path pointing to the user’s home directory (as
is_absolute() True if the path is absolute (has both a root and, if applicable,
is_block_device() Whether this path is a block device
is_char_device() Whether this path is a character device
is_dir() Whether this path is a directory
is_fifo() Whether this path is a FIFO
is_file() Whether this path is a regular file (also True for symlinks pointing
is_junction() Whether this path is a junction
is_mount() Check if this path is a mount point
is_relative_to() Return True if the path is relative to another path or False
is_reserved() Return True if the path contains one of the special names reserved
is_socket() Whether this path is a socket
is_symlink() Whether this path is a symbolic link
iterdir() Yield path objects of the directory contents
joinpath() Combine this path with one or several arguments, and return a
lchmod() Like chmod(), except if the path points to a symlink, the symlink’s
lstat() Like stat(), except if the path points to a symlink, the symlink’s
match() Return True if this path matches the given pattern
mkdir() Create a new directory at this given path
open() Open the file pointed to by this path and return a file object, as
owner() Return the login name of the file owner
read_bytes() Open the file in bytes mode, read it, and close the file
read_text() Open the file in text mode, read it, and close the file
readlink() Return the path to which the symbolic link points
relative_to() Return the relative path to another path identified by the passed
rename() Rename this path to the target path
replace() Rename this path to the target path, overwriting if that path exists
resolve() Make the path absolute, resolving all symlinks on the way and also
rglob() Recursively yield all existing files (of any kind, including
rmdir() Remove this directory
samefile() Return whether other_path is the same or not as this file
stat() Return the result of the stat() system call on this path, like
symlink_to() Make this path a symlink pointing to the target path
touch() Create this file with the given access mode, if it doesn’t exist
unlink() Remove this file or link
walk() Walk the directory tree from this directory, similar to os
with_name() Return a new path with the file name changed
with_segments() Construct a new path object from any number of path-like objects
with_stem() Return a new path with the stem changed
with_suffix() Return a new path with the file suffix changed
write_bytes() Open the file in bytes mode, write to it, and close the file
write_text() Open the file in text mode, write to it, and close the file

absolute()

def absolute()

Return an absolute version of this path by prepending the current working directory. No normalization or symlink resolution is performed.

Use resolve() to get the canonical path to a file.

as_posix()

def as_posix()

Return the string representation of the path with forward (/) slashes.

as_uri()

def as_uri()

Return the path as a ‘file’ URI.

chmod()

def chmod(
    mode,
    follow_symlinks,
):

Change the permissions of the path, like os.chmod().

Parameter Type
mode
follow_symlinks

cwd()

def cwd()

Return a new path pointing to the current working directory.

exists()

def exists(
    follow_symlinks,
):

Whether this path exists.

This method normally follows symlinks; to check whether a symlink exists, add the argument follow_symlinks=False.

Parameter Type
follow_symlinks

expanduser()

def expanduser()

Return a new path with expanded ~ and ~user constructs (as returned by os.path.expanduser)

glob()

def glob(
    pattern,
    case_sensitive,
):

Iterate over this subtree and yield all existing files (of any kind, including directories) matching the given relative pattern.

Parameter Type
pattern
case_sensitive

group()

def group()

Return the group name of the file gid.

def hardlink_to(
    target,
):

Make this path a hard link pointing to the same file as target.

Note the order of arguments (self, target) is the reverse of os.link’s.

Parameter Type
target

home()

def home()

Return a new path pointing to the user’s home directory (as returned by os.path.expanduser(’~’)).

is_absolute()

def is_absolute()

True if the path is absolute (has both a root and, if applicable, a drive).

is_block_device()

def is_block_device()

Whether this path is a block device.

is_char_device()

def is_char_device()

Whether this path is a character device.

is_dir()

def is_dir()

Whether this path is a directory.

is_fifo()

def is_fifo()

Whether this path is a FIFO.

is_file()

def is_file()

Whether this path is a regular file (also True for symlinks pointing to regular files).

is_junction()

def is_junction()

Whether this path is a junction.

is_mount()

def is_mount()

Check if this path is a mount point

is_relative_to()

def is_relative_to(
    other,
    _deprecated,
):

Return True if the path is relative to another path or False.

Parameter Type
other
_deprecated

is_reserved()

def is_reserved()

Return True if the path contains one of the special names reserved by the system, if any.

is_socket()

def is_socket()

Whether this path is a socket.

def is_symlink()

Whether this path is a symbolic link.

iterdir()

def iterdir()

Yield path objects of the directory contents.

The children are yielded in arbitrary order, and the special entries ‘.’ and ‘..’ are not included.

joinpath()

def joinpath(
    pathsegments,
):

Combine this path with one or several arguments, and return a new path representing either a subpath (if all arguments are relative paths) or a totally different path (if one of the arguments is anchored).

Parameter Type
pathsegments

lchmod()

def lchmod(
    mode,
):

Like chmod(), except if the path points to a symlink, the symlink’s permissions are changed, rather than its target’s.

Parameter Type
mode

lstat()

def lstat()

Like stat(), except if the path points to a symlink, the symlink’s status information is returned, rather than its target’s.

match()

def match(
    path_pattern,
    case_sensitive,
):

Return True if this path matches the given pattern.

Parameter Type
path_pattern
case_sensitive

mkdir()

def mkdir(
    mode,
    parents,
    exist_ok,
):

Create a new directory at this given path.

Parameter Type
mode
parents
exist_ok

open()

def open(
    mode,
    buffering,
    encoding,
    errors,
    newline,
):

Open the file pointed to by this path and return a file object, as the built-in open() function does.

Parameter Type
mode
buffering
encoding
errors
newline

owner()

def owner()

Return the login name of the file owner.

read_bytes()

def read_bytes()

Open the file in bytes mode, read it, and close the file.

read_text()

def read_text(
    encoding,
    errors,
):

Open the file in text mode, read it, and close the file.

Parameter Type
encoding
errors
def readlink()

Return the path to which the symbolic link points.

relative_to()

def relative_to(
    other,
    _deprecated,
    walk_up,
):

Return the relative path to another path identified by the passed arguments. If the operation is not possible (because this is not related to the other path), raise ValueError.

The walk_up parameter controls whether .. may be used to resolve the path.

Parameter Type
other
_deprecated
walk_up

rename()

def rename(
    target,
):

Rename this path to the target path.

The target path may be absolute or relative. Relative paths are interpreted relative to the current working directory, not the directory of the Path object.

Returns the new Path instance pointing to the target path.

Parameter Type
target

replace()

def replace(
    target,
):

Rename this path to the target path, overwriting if that path exists.

The target path may be absolute or relative. Relative paths are interpreted relative to the current working directory, not the directory of the Path object.

Returns the new Path instance pointing to the target path.

Parameter Type
target

resolve()

def resolve(
    strict,
):

Make the path absolute, resolving all symlinks on the way and also normalizing it.

Parameter Type
strict

rglob()

def rglob(
    pattern,
    case_sensitive,
):

Recursively yield all existing files (of any kind, including directories) matching the given relative pattern, anywhere in this subtree.

Parameter Type
pattern
case_sensitive

rmdir()

def rmdir()

Remove this directory. The directory must be empty.

samefile()

def samefile(
    other_path,
):

Return whether other_path is the same or not as this file (as returned by os.path.samefile()).

Parameter Type
other_path

stat()

def stat(
    follow_symlinks,
):

Return the result of the stat() system call on this path, like os.stat() does.

Parameter Type
follow_symlinks
def symlink_to(
    target,
    target_is_directory,
):

Make this path a symlink pointing to the target path. Note the order of arguments (link, target) is the reverse of os.symlink.

Parameter Type
target
target_is_directory

touch()

def touch(
    mode,
    exist_ok,
):

Create this file with the given access mode, if it doesn’t exist.

Parameter Type
mode
exist_ok
def unlink(
    missing_ok,
):

Remove this file or link. If the path is a directory, use rmdir() instead.

Parameter Type
missing_ok

walk()

def walk(
    top_down,
    on_error,
    follow_symlinks,
):

Walk the directory tree from this directory, similar to os.walk().

Parameter Type
top_down
on_error
follow_symlinks

with_name()

def with_name(
    name,
):

Return a new path with the file name changed.

Parameter Type
name

with_segments()

def with_segments(
    pathsegments,
):

Construct a new path object from any number of path-like objects. Subclasses may override this method to customize how new path objects are created from methods like iterdir().

Parameter Type
pathsegments

with_stem()

def with_stem(
    stem,
):

Return a new path with the stem changed.

Parameter Type
stem

with_suffix()

def with_suffix(
    suffix,
):

Return a new path with the file suffix changed. If the path has no suffix, add given suffix. If the given suffix is an empty string, remove the suffix from the path.

Parameter Type
suffix

write_bytes()

def write_bytes(
    data,
):

Open the file in bytes mode, write to it, and close the file.

Parameter Type
data

write_text()

def write_text(
    data,
    encoding,
    errors,
    newline,
):

Open the file in text mode, write to it, and close the file.

Parameter Type
data
encoding
errors
newline

Properties

Property Type Description
anchor
drive
name
parent
parents
parts
root
stem
suffix
suffixes

flytekit.types.schema.types.Scalar

def Scalar(
    primitive: typing.Optional[flytekit.models.literals.Primitive],
    blob: typing.Optional[flytekit.models.literals.Blob],
    binary: typing.Optional[flytekit.models.literals.Binary],
    schema: typing.Optional[flytekit.models.literals.Schema],
    union: typing.Optional[flytekit.models.literals.Union],
    none_type: typing.Optional[flytekit.models.literals.Void],
    error: typing.Optional[flytekit.models.types.Error],
    generic: typing.Optional[google.protobuf.struct_pb2.Struct],
    structured_dataset: typing.Optional[flytekit.models.literals.StructuredDataset],
):

Scalar wrapper around Flyte types. Only one can be specified.

Parameter Type
primitive typing.Optional[flytekit.models.literals.Primitive]
blob typing.Optional[flytekit.models.literals.Blob]
binary typing.Optional[flytekit.models.literals.Binary]
schema typing.Optional[flytekit.models.literals.Schema]
union typing.Optional[flytekit.models.literals.Union]
none_type typing.Optional[flytekit.models.literals.Void]
error typing.Optional[flytekit.models.types.Error]
generic typing.Optional[google.protobuf.struct_pb2.Struct]
structured_dataset typing.Optional[flytekit.models.literals.StructuredDataset]

Methods

Method Description
from_flyte_idl()
serialize_to_string() None
short_string()
to_flyte_idl()
verbose_string()

from_flyte_idl()

def from_flyte_idl(
    pb2_object,
):
Parameter Type
pb2_object

serialize_to_string()

def serialize_to_string()

short_string()

def short_string()

to_flyte_idl()

def to_flyte_idl()

verbose_string()

def verbose_string()

Properties

Property Type Description
binary
blob
error
generic
is_empty
none_type
primitive
schema
structured_dataset
union
value

flytekit.types.schema.types.Schema

def Schema(
    uri,
    type,
):

A strongly typed schema that defines the interface of data retrieved from the underlying storage medium.

Parameter Type
uri
type

Methods

Method Description
from_flyte_idl()
serialize_to_string() None
short_string()
to_flyte_idl()
verbose_string()

from_flyte_idl()

def from_flyte_idl(
    pb2_object,
):
Parameter Type
pb2_object

serialize_to_string()

def serialize_to_string()

short_string()

def short_string()

to_flyte_idl()

def to_flyte_idl()

verbose_string()

def verbose_string()

Properties

Property Type Description
is_empty
type
uri

flytekit.types.schema.types.SchemaEngine

This is the core Engine that handles all schema sub-systems. All schema types needs to be registered with this to allow direct support for that type in FlyteSchema. e.g. of possible supported types are Pandas.DataFrame, Spark.DataFrame, Vaex.DataFrame, etc.

Methods

Method Description
get_handler() None
register_handler() Register a new handler that can create a SchemaReader and SchemaWriter for the expected type

get_handler()

def get_handler(
    t: Type,
):
Parameter Type
t Type

register_handler()

def register_handler(
    h: SchemaHandler,
):

Register a new handler that can create a SchemaReader and SchemaWriter for the expected type.

Parameter Type
h SchemaHandler

flytekit.types.schema.types.SchemaFormat

Represents the schema storage format (at rest). Currently only parquet is supported

flytekit.types.schema.types.SchemaHandler

def SchemaHandler(
    name: str,
    object_type: Type,
    reader: Type[SchemaReader],
    writer: Type[SchemaWriter],
    handles_remote_io: bool,
):
Parameter Type
name str
object_type Type
reader Type[SchemaReader]
writer Type[SchemaWriter]
handles_remote_io bool

flytekit.types.schema.types.SchemaOpenMode

Create a collection of name/value pairs.

Example enumeration:

class Color(Enum): … RED = 1 … BLUE = 2 … GREEN = 3

Access them by:

  • attribute access:

Color.RED <Color.RED: 1>

  • value lookup:

Color(1) <Color.RED: 1>

  • name lookup:

Color[‘RED’] <Color.RED: 1>

Enumerations can be iterated over, and know how many members they have:

len(Color) 3

list(Color) [<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own attributes – see the documentation for details.

flytekit.types.schema.types.SchemaReader

Base SchemaReader to handle any readers (that can manage their own IO or otherwise) Use the simplified base LocalIOSchemaReader for non distributed dataframes

def SchemaReader(
    from_path: str,
    cols: typing.Optional[typing.Dict[str, type]],
    fmt: SchemaFormat,
):
Parameter Type
from_path str
cols typing.Optional[typing.Dict[str, type]]
fmt SchemaFormat

Methods

Method Description
all() None
iter() None

all()

def all(
    kwargs,
):
Parameter Type
kwargs **kwargs

iter()

def iter(
    kwargs,
):
Parameter Type
kwargs **kwargs

Properties

Property Type Description
column_names
from_path

flytekit.types.schema.types.SchemaType

def SchemaType(
    columns,
):
Parameter Type
columns

Methods

Method Description
from_flyte_idl()
serialize_to_string() None
short_string()
to_flyte_idl()
verbose_string()

from_flyte_idl()

def from_flyte_idl(
    proto,
):
Parameter Type
proto

serialize_to_string()

def serialize_to_string()

short_string()

def short_string()

to_flyte_idl()

def to_flyte_idl()

verbose_string()

def verbose_string()

Properties

Property Type Description
columns
is_empty

flytekit.types.schema.types.SchemaWriter

Abstract base class for generic types.

On Python 3.12 and newer, generic classes implicitly inherit from Generic when they declare a parameter list after the class’s name::

class Mapping[KT, VT]: def getitem(self, key: KT) -> VT: …

Etc.

On older versions of Python, however, generic classes have to explicitly inherit from Generic.

After a class has been declared to be generic, it can then be used as follows::

def lookup_name[KT, VT](mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: try: return mapping[key] except KeyError: return default

def SchemaWriter(
    to_path: str,
    cols: typing.Optional[typing.Dict[str, type]],
    fmt: SchemaFormat,
):
Parameter Type
to_path str
cols typing.Optional[typing.Dict[str, type]]
fmt SchemaFormat

Methods

Method Description
write() None

write()

def write(
    dfs,
    kwargs,
):
Parameter Type
dfs
kwargs **kwargs

Properties

Property Type Description
column_names
to_path

flytekit.types.schema.types.SerializableType

flytekit.types.schema.types.Struct

A ProtocolMessage

Methods

Method Description
get_or_create_list() Returns a list for this key, creating if it didn’t exist already
get_or_create_struct() Returns a struct for this key, creating if it didn’t exist already
items() None
keys() None
update() None
values() None

get_or_create_list()

def get_or_create_list(
    key,
):

Returns a list for this key, creating if it didn’t exist already.

Parameter Type
key

get_or_create_struct()

def get_or_create_struct(
    key,
):

Returns a struct for this key, creating if it didn’t exist already.

Parameter Type
key

items()

def items()

keys()

def keys()

update()

def update(
    dictionary,
):
Parameter Type
dictionary

values()

def values()

flytekit.types.schema.types.TypeEngine

Core Extensible TypeEngine of Flytekit. This should be used to extend the capabilities of FlyteKits type system. Users can implement their own TypeTransformers and register them with the TypeEngine. This will allow special handling of user objects

Methods

Method Description
async_to_literal() Converts a python value of a given type and expected LiteralType into a resolved Literal value
async_to_python_value() None
calculate_hash() None
dict_to_literal_map() None
dict_to_literal_map_pb() None
get_available_transformers() Returns all python types for which transformers are available
get_transformer() Implements a recursive search for the transformer
guess_python_type() Transforms a flyte-specific LiteralType to a regular python value
guess_python_types() Transforms a dictionary of flyte-specific Variable objects to a dictionary of regular python values
lazy_import_transformers() Only load the transformers if needed
literal_map_to_kwargs() None
named_tuple_to_variable_map() Converts a python-native NamedTuple to a flyte-specific VariableMap of named literals
register() This should be used for all types that respond with the right type annotation when you use type(
register_additional_type() None
register_restricted_type() None
to_html() None
to_literal() The current dance is because we are allowing users to call from an async function, this synchronous
to_literal_checks() None
to_literal_type() Converts a python type into a flyte specific LiteralType
to_python_value() Converts a Literal value with an expected python type into a python value
unwrap_offloaded_literal() None

async_to_literal()

def async_to_literal(
    ctx: FlyteContext,
    python_val: typing.Any,
    python_type: Type[T],
    expected: LiteralType,
):

Converts a python value of a given type and expected LiteralType into a resolved Literal value.

Parameter Type
ctx FlyteContext
python_val typing.Any
python_type Type[T]
expected LiteralType

async_to_python_value()

def async_to_python_value(
    ctx: FlyteContext,
    lv: Literal,
    expected_python_type: Type,
):
Parameter Type
ctx FlyteContext
lv Literal
expected_python_type Type

calculate_hash()

def calculate_hash(
    python_val: typing.Any,
    python_type: Type[T],
):
Parameter Type
python_val typing.Any
python_type Type[T]

dict_to_literal_map()

def dict_to_literal_map(
    ctx: FlyteContext,
    d: typing.Dict[str, typing.Any],
    type_hints: Optional[typing.Dict[str, type]],
):
Parameter Type
ctx FlyteContext
d typing.Dict[str, typing.Any]
type_hints Optional[typing.Dict[str, type]]

dict_to_literal_map_pb()

def dict_to_literal_map_pb(
    ctx: FlyteContext,
    d: typing.Dict[str, typing.Any],
    type_hints: Optional[typing.Dict[str, type]],
):
Parameter Type
ctx FlyteContext
d typing.Dict[str, typing.Any]
type_hints Optional[typing.Dict[str, type]]

get_available_transformers()

def get_available_transformers()

Returns all python types for which transformers are available

get_transformer()

def get_transformer(
    python_type: Type,
):

Implements a recursive search for the transformer.

Parameter Type
python_type Type

guess_python_type()

def guess_python_type(
    flyte_type: LiteralType,
):

Transforms a flyte-specific LiteralType to a regular python value.

Parameter Type
flyte_type LiteralType

guess_python_types()

def guess_python_types(
    flyte_variable_dict: typing.Dict[str, _interface_models.Variable],
):

Transforms a dictionary of flyte-specific Variable objects to a dictionary of regular python values.

Parameter Type
flyte_variable_dict typing.Dict[str, _interface_models.Variable]

lazy_import_transformers()

def lazy_import_transformers()

Only load the transformers if needed.

literal_map_to_kwargs()

def literal_map_to_kwargs(
    ctx: FlyteContext,
    lm: LiteralMap,
    python_types: typing.Optional[typing.Dict[str, type]],
    literal_types: typing.Optional[typing.Dict[str, _interface_models.Variable]],
):
Parameter Type
ctx FlyteContext
lm LiteralMap
python_types typing.Optional[typing.Dict[str, type]]
literal_types typing.Optional[typing.Dict[str, _interface_models.Variable]]

named_tuple_to_variable_map()

def named_tuple_to_variable_map(
    t: typing.NamedTuple,
):

Converts a python-native NamedTuple to a flyte-specific VariableMap of named literals.

Parameter Type
t typing.NamedTuple

register()

def register(
    transformer: TypeTransformer,
    additional_types: Optional[typing.List[Type]],
):

This should be used for all types that respond with the right type annotation when you use type(…) function

Parameter Type
transformer TypeTransformer
additional_types Optional[typing.List[Type]]

register_additional_type()

def register_additional_type(
    transformer: TypeTransformer[T],
    additional_type: Type[T],
    override,
):
Parameter Type
transformer TypeTransformer[T]
additional_type Type[T]
override

register_restricted_type()

def register_restricted_type(
    name: str,
    type: Type[T],
):
Parameter Type
name str
type Type[T]

to_html()

def to_html(
    ctx: FlyteContext,
    python_val: typing.Any,
    expected_python_type: Type[typing.Any],
):
Parameter Type
ctx FlyteContext
python_val typing.Any
expected_python_type Type[typing.Any]

to_literal()

def to_literal(
    ctx: FlyteContext,
    python_val: typing.Any,
    python_type: Type[T],
    expected: LiteralType,
):

The current dance is because we are allowing users to call from an async function, this synchronous to_literal function, and allowing this to_literal function, to then invoke yet another async function, namely an async transformer.

Parameter Type
ctx FlyteContext
python_val typing.Any
python_type Type[T]
expected LiteralType

to_literal_checks()

def to_literal_checks(
    python_val: typing.Any,
    python_type: Type[T],
    expected: LiteralType,
):
Parameter Type
python_val typing.Any
python_type Type[T]
expected LiteralType

to_literal_type()

def to_literal_type(
    python_type: Type[T],
):

Converts a python type into a flyte specific LiteralType

Parameter Type
python_type Type[T]

to_python_value()

def to_python_value(
    ctx: FlyteContext,
    lv: Literal,
    expected_python_type: Type,
):

Converts a Literal value with an expected python type into a python value.

Parameter Type
ctx FlyteContext
lv Literal
expected_python_type Type

unwrap_offloaded_literal()

def unwrap_offloaded_literal(
    ctx: FlyteContext,
    lv: Literal,
):
Parameter Type
ctx FlyteContext
lv Literal

flytekit.types.schema.types.TypeTransformerFailedError

Inappropriate argument type.