flytekit.remote.executions
Directory
Classes
flytekit.remote.executions.FlyteNodeExecution
A class encapsulating a node execution being run on a Flyte remote backend.
def FlyteNodeExecution(
args,
kwargs,
):
Parameter |
Type |
args |
*args |
kwargs |
**kwargs |
Methods
from_flyte_idl()
def from_flyte_idl(
p: flyteidl.admin.node_execution_pb2.NodeExecution,
):
Parameter |
Type |
p |
flyteidl.admin.node_execution_pb2.NodeExecution |
def promote_from_model(
base_model: node_execution_models.NodeExecution,
):
Parameter |
Type |
base_model |
node_execution_models.NodeExecution |
serialize_to_string()
def serialize_to_string()
short_string()
to_flyte_idl()
verbose_string()
Properties
Property |
Type |
Description |
closure |
|
|
error |
|
|
executions |
|
|
id |
|
|
input_uri |
|
|
inputs |
|
|
interface |
|
|
is_done |
|
|
is_empty |
|
|
metadata |
|
|
outputs |
|
|
subworkflow_node_executions |
|
|
task_executions |
|
|
workflow_executions |
|
|
flytekit.remote.executions.FlyteTask
A class encapsulating a remote Flyte task.
def FlyteTask(
id,
type,
metadata,
interface,
custom,
container,
task_type_version: int,
security_context,
config,
k8s_pod,
sql,
extended_resources,
should_register: bool,
):
Parameter |
Type |
id |
|
type |
|
metadata |
|
interface |
|
custom |
|
container |
|
task_type_version |
int |
security_context |
|
config |
|
k8s_pod |
|
sql |
|
extended_resources |
|
should_register |
bool |
Methods
compile()
def compile(
ctx: flytekit.core.context_manager.FlyteContext,
args,
kwargs,
):
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
args |
*args |
kwargs |
**kwargs |
def construct_node_metadata()
Used when constructing the node that encapsulates this task as part of a broader workflow definition.
execute()
Parameter |
Type |
kwargs |
**kwargs |
from_flyte_idl()
def from_flyte_idl(
pb2_object,
):
Parameter |
Type |
pb2_object |
|
local_execute()
def local_execute(
ctx: flytekit.core.context_manager.FlyteContext,
kwargs,
):
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
kwargs |
**kwargs |
local_execution_mode()
def local_execution_mode()
def promote_from_model(
base_model: _task_model.TaskTemplate,
):
Parameter |
Type |
base_model |
_task_model.TaskTemplate |
serialize_to_string()
def serialize_to_string()
short_string()
to_flyte_idl()
verbose_string()
Properties
Property |
Type |
Description |
config |
|
|
container |
|
|
custom |
|
|
docs |
|
|
entity_type_text |
|
|
extended_resources |
|
|
id |
|
|
interface |
|
|
is_empty |
|
|
k8s_pod |
|
|
metadata |
|
|
name |
|
|
python_interface |
|
|
resource_type |
|
|
security_context |
|
|
should_register |
|
|
sql |
|
|
task_type_version |
|
|
template |
|
|
type |
|
|
flytekit.remote.executions.FlyteTaskExecution
A class encapsulating a task execution being run on a Flyte remote backend.
def FlyteTaskExecution(
args,
kwargs,
):
Parameter |
Type |
args |
*args |
kwargs |
**kwargs |
Methods
from_flyte_idl()
def from_flyte_idl(
proto,
):
def promote_from_model(
base_model: admin_task_execution_models.TaskExecution,
):
Parameter |
Type |
base_model |
admin_task_execution_models.TaskExecution |
serialize_to_string()
def serialize_to_string()
short_string()
to_flyte_idl()
verbose_string()
Properties
Property |
Type |
Description |
closure |
|
|
error |
|
|
id |
|
|
input_uri |
|
|
inputs |
|
|
is_done |
|
|
is_empty |
|
|
is_parent |
|
|
outputs |
|
|
task |
|
|
flytekit.remote.executions.FlyteWorkflow
A class encapsulating a remote Flyte workflow.
def FlyteWorkflow(
id: id_models.Identifier,
nodes: List[FlyteNode],
interface,
output_bindings,
metadata,
metadata_defaults,
subworkflows: Optional[List[FlyteWorkflow]],
tasks: Optional[List[FlyteTask]],
launch_plans: Optional[Dict[id_models.Identifier, launch_plan_models.LaunchPlanSpec]],
compiled_closure: Optional[compiler_models.CompiledWorkflowClosure],
should_register: bool,
):
Parameter |
Type |
id |
id_models.Identifier |
nodes |
List[FlyteNode] |
interface |
|
output_bindings |
|
metadata |
|
metadata_defaults |
|
subworkflows |
Optional[List[FlyteWorkflow]] |
tasks |
Optional[List[FlyteTask]] |
launch_plans |
Optional[Dict[id_models.Identifier, launch_plan_models.LaunchPlanSpec]] |
compiled_closure |
Optional[compiler_models.CompiledWorkflowClosure] |
should_register |
bool |
Methods
compile()
def compile(
ctx: flytekit.core.context_manager.FlyteContext,
args,
kwargs,
):
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
args |
*args |
kwargs |
**kwargs |
def construct_node_metadata()
Used when constructing the node that encapsulates this task as part of a broader workflow definition.
execute()
Parameter |
Type |
kwargs |
**kwargs |
from_flyte_idl()
def from_flyte_idl(
pb2_object,
):
Parameter |
Type |
pb2_object |
|
get_non_system_nodes()
def get_non_system_nodes(
nodes: List[_workflow_models.Node],
):
Parameter |
Type |
nodes |
List[_workflow_models.Node] |
local_execute()
def local_execute(
ctx: flytekit.core.context_manager.FlyteContext,
kwargs,
):
Parameter |
Type |
ctx |
flytekit.core.context_manager.FlyteContext |
kwargs |
**kwargs |
local_execution_mode()
def local_execution_mode()
def promote_from_closure(
closure: compiler_models.CompiledWorkflowClosure,
node_launch_plans: Optional[Dict[id_models, launch_plan_models.LaunchPlanSpec]],
):
Extracts out the relevant portions of a FlyteWorkflow from a closure from the control plane.
Parameter |
Type |
closure |
compiler_models.CompiledWorkflowClosure |
node_launch_plans |
Optional[Dict[id_models, launch_plan_models.LaunchPlanSpec]] |
def promote_from_model(
base_model: _workflow_models.WorkflowTemplate,
sub_workflows: Optional[Dict[Identifier, _workflow_models.WorkflowTemplate]],
tasks: Optional[Dict[Identifier, FlyteTask]],
node_launch_plans: Optional[Dict[Identifier, launch_plan_models.LaunchPlanSpec]],
):
Parameter |
Type |
base_model |
_workflow_models.WorkflowTemplate |
sub_workflows |
Optional[Dict[Identifier, _workflow_models.WorkflowTemplate]] |
tasks |
Optional[Dict[Identifier, FlyteTask]] |
node_launch_plans |
Optional[Dict[Identifier, launch_plan_models.LaunchPlanSpec]] |
serialize_to_string()
def serialize_to_string()
short_string()
to_flyte_idl()
verbose_string()
Properties
Property |
Type |
Description |
docs |
|
|
entity_type_text |
|
|
failure_node |
|
|
flyte_nodes |
|
|
flyte_sub_workflows |
|
|
flyte_tasks |
|
|
id |
|
|
interface |
|
|
is_empty |
|
|
metadata |
|
|
metadata_defaults |
|
|
name |
|
|
nodes |
|
|
outputs |
|
|
python_interface |
|
|
resource_type |
|
|
should_register |
|
|
sub_workflows |
|
|
template |
|
|
flytekit.remote.executions.FlyteWorkflowExecution
A class encapsulating a workflow execution being run on a Flyte remote backend.
def FlyteWorkflowExecution(
type_hints: Optional[Dict[str, typing.Type]],
remote: Optional['FlyteRemote'],
args,
kwargs,
):
Parameter |
Type |
type_hints |
Optional[Dict[str, typing.Type]] |
remote |
Optional['FlyteRemote'] |
args |
*args |
kwargs |
**kwargs |
Methods
from_flyte_idl()
def from_flyte_idl(
pb,
):
def promote_from_model(
base_model: execution_models.Execution,
remote: Optional['FlyteRemote'],
type_hints: Optional[Dict[str, typing.Type]],
):
Parameter |
Type |
base_model |
execution_models.Execution |
remote |
Optional['FlyteRemote'] |
type_hints |
Optional[Dict[str, typing.Type]] |
serialize_to_string()
def serialize_to_string()
short_string()
sync()
def sync(
sync_nodes: bool,
):
Sync the state of the current execution and returns a new object with the updated state.
Parameter |
Type |
sync_nodes |
bool |
to_flyte_idl()
verbose_string()
wait()
def wait(
timeout: Optional[Union[timedelta, int]],
poll_interval: Optional[Union[timedelta, int]],
sync_nodes: bool,
):
Wait for the execution to complete. This is a blocking call.
Parameter |
Type |
timeout |
Optional[Union[timedelta, int]] |
poll_interval |
Optional[Union[timedelta, int]] |
sync_nodes |
bool |
Properties
Property |
Type |
Description |
closure |
|
|
error |
|
|
execution_url |
|
|
flyte_workflow |
|
|
id |
|
|
inputs |
|
|
is_done |
|
|
is_empty |
|
|
is_successful |
|
|
node_executions |
|
|
outputs |
|
|
spec |
|
|
flytekit.remote.executions.LiteralsResolver
LiteralsResolver is a helper class meant primarily for use with the FlyteRemote experience or any other situation
where you might be working with LiteralMaps. This object allows the caller to specify the Python type that should
correspond to an element of the map.
def LiteralsResolver(
literals: typing.Dict[str, Literal],
variable_map: Optional[Dict[str, _interface_models.Variable]],
ctx: Optional[FlyteContext],
):
Parameter |
Type |
literals |
typing.Dict[str, Literal] |
variable_map |
Optional[Dict[str, _interface_models.Variable]] |
ctx |
Optional[FlyteContext] |
Methods
as_python_native()
def as_python_native(
python_interface: Interface,
):
This should return the native Python representation, compatible with unpacking.
This function relies on Python interface outputs being ordered correctly.
Parameter |
Type |
python_interface |
Interface |
clear()
D.clear() -> None. Remove all items from D.
copy()
fromkeys()
def fromkeys(
iterable,
value,
):
Parameter |
Type |
iterable |
|
value |
|
get()
def get(
attr: str,
as_type: Optional[typing.Type],
):
This will get the attr
value from the Literal map, and invoke the TypeEngine to convert it into a Python
native value. A Python type can optionally be supplied. If successful, the native value will be cached and
future calls will return the cached value instead.
Parameter |
Type |
attr |
str |
as_type |
Optional[typing.Type] |
get_literal()
def get_literal(
key: str,
):
items()
D.items() -> a set-like object providing a view on D’s items
keys()
D.keys() -> a set-like object providing a view on D’s keys
pop()
def pop(
key,
default,
):
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
Parameter |
Type |
key |
|
default |
|
popitem()
D.popitem() -> (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.
setdefault()
def setdefault(
key,
default,
):
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
Parameter |
Type |
key |
|
default |
|
update()
def update(
other,
kwds,
):
D.update([E, ]**F) -> None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E.keys(): D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v
Parameter |
Type |
other |
|
kwds |
|
update_type_hints()
def update_type_hints(
type_hints: typing.Dict[str, typing.Type],
):
Parameter |
Type |
type_hints |
typing.Dict[str, typing.Type] |
values()
D.values() -> an object providing a view on D’s values
Properties
Property |
Type |
Description |
literals |
|
|
native_values |
|
|
variable_map |
|
|
flytekit.remote.executions.RemoteExecutionBase
def RemoteExecutionBase(
args,
kwargs,
):
Parameter |
Type |
args |
*args |
kwargs |
**kwargs |
Properties
Property |
Type |
Description |
error |
|
|
inputs |
|
|
is_done |
|
|
outputs |
|
|
flytekit.remote.executions.TypedInterface
def TypedInterface(
inputs,
outputs,
):
Please note that this model is slightly incorrect, but is more user-friendly. The underlying inputs and
outputs are represented directly as Python dicts, rather than going through the additional VariableMap layer.
Parameter |
Type |
inputs |
|
outputs |
|
Methods
from_flyte_idl()
def from_flyte_idl(
proto: flyteidl.core.interface_pb2.TypedInterface,
):
Parameter |
Type |
proto |
flyteidl.core.interface_pb2.TypedInterface |
serialize_to_string()
def serialize_to_string()
short_string()
to_flyte_idl()
def transform_interface_to_list(
bound_inputs: typing.Set[str],
excluded_inputs: typing.Set[str],
):
Takes a single task interface and interpolates it to an array interface - to allow performing distributed
python map like functions
Parameter |
Type |
bound_inputs |
typing.Set[str] |
excluded_inputs |
typing.Set[str] |
verbose_string()
Properties
Property |
Type |
Description |
inputs |
|
|
is_empty |
|
|
outputs |
|
|
flytekit.remote.executions.timedelta
Difference between two datetime values.
timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0)
All arguments are optional and default to 0.
Arguments may be integers or floats, and may be positive or negative.