1.15.4.dev2+g3e3ce2426

flytekit.core.python_function_task

========================================= :mod:flytekit.core.python_function_task

.. currentmodule:: flytekit.core.python_function_task

.. autosummary:: :nosignatures: :template: custom.rst :toctree: generated/

PythonFunctionTask PythonInstanceTask

Directory

Classes

Class Description
ABC Helper class that provides a standard way to create an ABC using.
Any Special type indicating an unconstrained type.
AsyncPythonFunctionTask This is the base task for eager tasks, as well as normal async tasks.
Controller This controller object is responsible for kicking off and monitoring executions against a Flyte Admin endpoint.
Deck Deck enable users to get customizable and default visibility into their tasks.
Docstring None.
EagerAsyncPythonFunctionTask This is the base eager task (aka eager workflow) type.
EagerFailureHandlerTask A Python AutoContainer task should be used as the base for all extensions that want the user’s code to be in the.
EagerFailureTaskResolver Flytekit tasks interact with the Flyte platform very, very broadly in two steps.
Enum Create a collection of name/value pairs.
ExecutionState This is the context that is active when executing a task or a local workflow.
FlyteContext This is an internal-facing context object, that most users will not have to deal with.
FlyteContextManager FlyteContextManager manages the execution context within Flytekit.
FlyteTrackedABC This class exists because if you try to inherit from abc.
ImageConfig We recommend you to use ImageConfig.
ImageSpec This class is used to specify the docker image that will be used to run the task.
Interface A Python native interface object, like inspect.
LiteralMap None.
OrderedDict Dictionary that remembers insertion order.
Promise This object is a wrapper and exists for three main reasons.
PythonAutoContainerTask A Python AutoContainer task should be used as the base for all extensions that want the user’s code to be in the.
PythonFunctionTask A Python Function task should be used as the base for all extensions that have a python function.
PythonFunctionWorkflow Please read :std:ref:flyte:divedeep-workflows first for a high-level understanding of what workflows are in Flyte.
PythonInstanceTask This class should be used as the base class for all Tasks that do not have a user defined function body, but have.
SerializationSettings These settings are provided while serializing a workflow and task, before registration.
Task The base of all Tasks in flytekit.
TaskMetadata Metadata for a Task.
TaskResolverMixin Flytekit tasks interact with the Flyte platform very, very broadly in two steps.
TypeVar Type variable.
ValueIn None.
VoidPromise This object is returned for tasks that do not return any outputs (declared interface is empty).
WorkflowBase None.
WorkflowFailurePolicy Defines the behavior for a workflow execution in the case of an observed node execution failure.
WorkflowMetadata None.
WorkflowMetadataDefaults This class is similarly named to the one above.
suppress Context manager to suppress specified exceptions.

Errors

flytekit.core.python_function_task.ABC

Helper class that provides a standard way to create an ABC using inheritance.

flytekit.core.python_function_task.Any

Special type indicating an unconstrained type.

  • Any is compatible with every type.
  • Any assumed to have all methods.
  • All values assumed to be instances of Any.

Note that all the above statements are true from the point of view of static type checkers. At runtime, Any should not be used with instance checks.

flytekit.core.python_function_task.AsyncPythonFunctionTask

This is the base task for eager tasks, as well as normal async tasks Really only need to override the call function.

def AsyncPythonFunctionTask(
    task_config: T,
    task_function: Callable,
    task_type,
    ignore_input_vars: Optional[List[str]],
    execution_mode: ExecutionBehavior,
    task_resolver: Optional[TaskResolverMixin],
    node_dependency_hints: Optional[Iterable[Union['PythonFunctionTask', '_annotated_launch_plan.LaunchPlan', WorkflowBase]]],
    pickle_untyped: bool,
    kwargs,
):
Parameter Type
task_config T
task_function Callable
task_type
ignore_input_vars Optional[List[str]]
execution_mode ExecutionBehavior
task_resolver Optional[TaskResolverMixin]
node_dependency_hints Optional[Iterable[Union['PythonFunctionTask', '_annotated_launch_plan.LaunchPlan', WorkflowBase]]]
pickle_untyped bool
kwargs **kwargs

Methods

Method Description
async_execute() Overrides the base execute function
compile() Generates a node that encapsulates this task in a workflow definition
compile_into_workflow() In the case of dynamic workflows, this function will produce a workflow definition at execution time which will
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition
dispatch_execute() This method translates Flyte’s Type system based input values and invokes the actual call to the executor
dynamic_execute() By the time this function is invoked, the local_execute function should have unwrapped the Promises and Flyte
execute() Overrides the base execute function
find_lhs() None
get_command() Returns the command which should be used in the container definition for the serialized version of this task
get_config() Returns the task config as a serializable dictionary
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary
get_default_command() Returns the default pyflyte-execute command used to run this on hosted Flyte platforms
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte
get_image() Update image spec based on fast registration usage, and return string representing the image
get_input_types() Returns the names and python types as a dictionary for the inputs of this task
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte
get_type_for_input_var() Returns the python type for an input variable by name
get_type_for_output_var() Returns the python type for the specified output variable by name
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute
local_execution_mode() None
post_execute() Post execute is called after the execution has completed, with the user_params and can be used to clean-up,
pre_execute() This is the method that will be invoked directly before executing the task method and before all the inputs
reset_command_fn() Resets the command which should be used in the container definition of this task to the default arguments
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution
set_command_fn() By default, the task will run on the Flyte platform using the pyflyte-execute command
set_resolver() By default, flytekit uses the DefaultTaskResolver to resolve the task

async_execute()

def async_execute(
    args,
    kwargs,
):

Overrides the base execute function. This function does not handle dynamic at all. Eager and dynamic don’t mix.

Parameter Type
args *args
kwargs **kwargs

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
):

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

compile_into_workflow()

def compile_into_workflow(
    ctx: FlyteContext,
    task_function: Callable,
    kwargs,
):

In the case of dynamic workflows, this function will produce a workflow definition at execution time which will then proceed to be executed.

Parameter Type
ctx FlyteContext
task_function Callable
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.

  • VoidPromise is returned in the case when the task itself declares no outputs.
  • Literal Map is returned when the task returns either one more outputs in the declaration. Individual outputs may be none
  • DynamicJobSpec is returned when a dynamic workflow is executed
Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

dynamic_execute()

def dynamic_execute(
    task_function: Callable,
    kwargs,
):

By the time this function is invoked, the local_execute function should have unwrapped the Promises and Flyte literal wrappers so that the kwargs we are working with here are now Python native literal values. This function is also expected to return Python native literal values.

Since the user code within a dynamic task constitute a workflow, we have to first compile the workflow, and then execute that workflow.

When running for real in production, the task would stop after the compilation step, and then create a file representing that newly generated workflow, instead of executing it.

Parameter Type
task_function Callable
kwargs **kwargs

execute()

def execute(
    args,
    kwargs,
):

Overrides the base execute function. This function does not handle dynamic at all. Eager and dynamic don’t mix.

Parameter Type
args *args
kwargs **kwargs

find_lhs()

def find_lhs()

get_command()

def get_command(
    settings: SerializationSettings,
):

Returns the command which should be used in the container definition for the serialized version of this task registered on a hosted Flyte platform.

Parameter Type
settings SerializationSettings

get_config()

def get_config(
    settings: SerializationSettings,
):

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings SerializationSettings

get_container()

def get_container(
    settings: SerializationSettings,
):

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
):

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_default_command()

def get_default_command(
    settings: SerializationSettings,
):

Returns the default pyflyte-execute command used to run this on hosted Flyte platforms.

Parameter Type
settings SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: SerializationSettings,
):

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_image()

def get_image(
    settings: SerializationSettings,
):

Update image spec based on fast registration usage, and return string representing the image

Parameter Type
settings SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: SerializationSettings,
):

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
):

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
):

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
):

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
    rval: typing.Any,
):

Post execute is called after the execution has completed, with the user_params and can be used to clean-up, or alter the outputs to match the intended tasks outputs. If not overridden, then this function is a No-op

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]
rval typing.Any

pre_execute()

def pre_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
):

This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called

This should return either the same context of the mutated context

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]

reset_command_fn()

def reset_command_fn()

Resets the command which should be used in the container definition of this task to the default arguments. This is useful when the command line is overridden at serialization time.

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

set_command_fn()

def set_command_fn(
    get_command_fn: Optional[Callable[[SerializationSettings], List[str]]],
):

By default, the task will run on the Flyte platform using the pyflyte-execute command. However, it can be useful to update the command with which the task is serialized for specific cases like running map tasks (“pyflyte-map-execute”) or for fast-executed tasks.

Parameter Type
get_command_fn Optional[Callable[[SerializationSettings], List[str]]]

set_resolver()

def set_resolver(
    resolver: TaskResolverMixin,
):

By default, flytekit uses the DefaultTaskResolver to resolve the task. This method allows the user to set a custom task resolver. It can be useful to override the task resolver for specific cases like running tasks in the jupyter notebook.

Parameter Type
resolver TaskResolverMixin

Properties

Property Type Description
container_image
deck_fields
disable_deck
docs
enable_deck
environment
execution_mode
instantiated_in
interface
lhs
location
metadata
name
node_dependency_hints
python_interface
resources
security_context
task_config
task_function
task_resolver
task_type
task_type_version

flytekit.core.python_function_task.Controller

This controller object is responsible for kicking off and monitoring executions against a Flyte Admin endpoint using a FlyteRemote object. It is used only for running eager tasks. It exposes one async method, add, which should be called by the eager task to run a sub-flyte-entity (task, workflow, or a nested eager task).

The controller maintains a dictionary of entries, where each entry is a list of WorkItems. They are maintained in a list because the number of times and order that each task (or subwf, lp) is called affects the execution name which is consistently hashed.

After calling add, a background thread is started to reconcile the state of this dictionary of WorkItem entries. Executions that should be kicked off will be kicked off, and ones that are running will be checked. This runs in a loop similar to a controller loop in a k8s operator.

def Controller(
    remote: FlyteRemote,
    ss: SerializationSettings,
    tag: str,
    root_tag: str,
    exec_prefix: str,
):
Parameter Type
remote FlyteRemote
ss SerializationSettings
tag str
root_tag str
exec_prefix str

Methods

Method Description
add() Add an entity along with the requested inputs to be submitted to Admin for running and return a future
for_sandbox() None
get_env() In order for downstream tasks to correctly set the root label, this needs to pass down that information
get_execution_name() Make a deterministic name
get_labels() These labels keep track of the current and root (in case of nested) eager execution, that is responsible for
get_signal_handler() TODO: At some point, this loop would be ideally managed by the loop manager, and the signal handler should
launch_execution() This function launches executions
reconcile_one() This is responsible for processing one work item
render_html() Render the callstack as a deck presentation to be shown after eager workflow execution

add()

def add(
    entity: RunnableEntity,
    input_kwargs: dict[str, typing.Any],
):

Add an entity along with the requested inputs to be submitted to Admin for running and return a future

Parameter Type
entity RunnableEntity
input_kwargs dict[str, typing.Any]

for_sandbox()

def for_sandbox(
    exec_prefix: typing.Optional[str],
):
Parameter Type
exec_prefix typing.Optional[str]

get_env()

def get_env()

In order for downstream tasks to correctly set the root label, this needs to pass down that information.

get_execution_name()

def get_execution_name(
    entity: RunnableEntity,
    idx: int,
    input_kwargs: dict[str, typing.Any],
):

Make a deterministic name

Parameter Type
entity RunnableEntity
idx int
input_kwargs dict[str, typing.Any]

get_labels()

def get_labels()

These labels keep track of the current and root (in case of nested) eager execution, that is responsible for kicking off this execution.

get_signal_handler()

def get_signal_handler()

TODO: At some point, this loop would be ideally managed by the loop manager, and the signal handler should gracefully initiate shutdown of all loops, calling .cancel() on all tasks, allowing each loop to clean up, starting with the deepest loop/thread first and working up. https://github.com/flyteorg/flyte/issues/6068

launch_execution()

def launch_execution(
    wi: WorkItem,
    idx: int,
):

This function launches executions.

Parameter Type
wi WorkItem
idx int

reconcile_one()

def reconcile_one(
    update: Update,
):

This is responsible for processing one work item. Will launch, update, set error on the update object Any errors are captured in the update object.

Parameter Type
update Update

render_html()

def render_html()

Render the callstack as a deck presentation to be shown after eager workflow execution.

flytekit.core.python_function_task.Deck

Deck enable users to get customizable and default visibility into their tasks.

Deck contains a list of renderers (FrameRenderer, MarkdownRenderer) that can generate a html file. For example, FrameRenderer can render a DataFrame as an HTML table, MarkdownRenderer can convert Markdown string to HTML

Flyte context saves a list of deck objects, and we use renderers in those decks to render the data and create an HTML file when those tasks are executed

Each task has a least three decks (input, output, default). Input/output decks are used to render tasks’ input/output data, and the default deck is used to render line plots, scatter plots or Markdown text. In addition, users can create new decks to render their data with custom renderers.

.. code-block:: python

iris_df = px.data.iris()

@task() def t1() -> str: md_text = ‘#Hello Flyte##Hello Flyte###Hello Flyte’ m = MarkdownRenderer() s = BoxRenderer(“sepal_length”) deck = flytekit.Deck(“demo”, s.to_html(iris_df)) deck.append(m.to_html(md_text)) default_deck = flytekit.current_context().default_deck default_deck.append(m.to_html(md_text)) return md_text

Use Annotated to override default renderer

@task() def t2() -> Annotated[pd.DataFrame, TopFrameRenderer(10)]: return iris_df

def Deck(
    name: str,
    html: typing.Optional[str],
    auto_add_to_deck: bool,
):
Parameter Type
name str
html typing.Optional[str]
auto_add_to_deck bool

Methods

Method Description
append() None
publish() None

append()

def append(
    html: str,
):
Parameter Type
html str

publish()

def publish()

Properties

Property Type Description
html
name

flytekit.core.python_function_task.Docstring

def Docstring(
    docstring: typing.Optional[str],
    callable_: typing.Optional[typing.Callable],
):
Parameter Type
docstring typing.Optional[str]
callable_ typing.Optional[typing.Callable]

Properties

Property Type Description
input_descriptions
long_description
output_descriptions
short_description

flytekit.core.python_function_task.EagerAsyncPythonFunctionTask

This is the base eager task (aka eager workflow) type. It replaces the previous experiment eager task type circa Q4 2024. Users unfamiliar with this concept should refer to the documentation for more information. But basically, Python becomes propeller, and every task invocation, creates a stack frame on the Flyte cluster in the form of an execution rather than on the actual memory stack.

def EagerAsyncPythonFunctionTask(
    task_config: T,
    task_function: Callable,
    task_type,
    ignore_input_vars: Optional[List[str]],
    task_resolver: Optional[TaskResolverMixin],
    node_dependency_hints: Optional[Iterable[Union['PythonFunctionTask', '_annotated_launch_plan.LaunchPlan', WorkflowBase]]],
    enable_deck: bool,
    kwargs,
):
Parameter Type
task_config T
task_function Callable
task_type
ignore_input_vars Optional[List[str]]
task_resolver Optional[TaskResolverMixin]
node_dependency_hints Optional[Iterable[Union['PythonFunctionTask', '_annotated_launch_plan.LaunchPlan', WorkflowBase]]]
enable_deck bool
kwargs **kwargs

Methods

Method Description
async_execute() Overrides the base execute function
compile() Generates a node that encapsulates this task in a workflow definition
compile_into_workflow() In the case of dynamic workflows, this function will produce a workflow definition at execution time which will
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition
dispatch_execute() This method translates Flyte’s Type system based input values and invokes the actual call to the executor
dynamic_execute() By the time this function is invoked, the local_execute function should have unwrapped the Promises and Flyte
execute() Overrides the base execute function
find_lhs() None
get_as_workflow() None
get_command() Returns the command which should be used in the container definition for the serialized version of this task
get_config() Returns the task config as a serializable dictionary
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary
get_default_command() Returns the default pyflyte-execute command used to run this on hosted Flyte platforms
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte
get_image() Update image spec based on fast registration usage, and return string representing the image
get_input_types() Returns the names and python types as a dictionary for the inputs of this task
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte
get_type_for_input_var() Returns the python type for an input variable by name
get_type_for_output_var() Returns the python type for the specified output variable by name
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute
local_execution_mode() None
post_execute() Post execute is called after the execution has completed, with the user_params and can be used to clean-up,
pre_execute() This is the method that will be invoked directly before executing the task method and before all the inputs
reset_command_fn() Resets the command which should be used in the container definition of this task to the default arguments
run() This is a helper function to help run eager parent tasks locally, pointing to a remote cluster
run_with_backend() This is the main entry point to kick off a live run
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution
set_command_fn() By default, the task will run on the Flyte platform using the pyflyte-execute command
set_resolver() By default, flytekit uses the DefaultTaskResolver to resolve the task

async_execute()

def async_execute(
    args,
    kwargs,
):

Overrides the base execute function. This function does not handle dynamic at all. Eager and dynamic don’t mix.

Some notes on the different call scenarios since it’s a little different than other tasks. a) starting local execution - eager_task() -> last condition of call handler, -> set execution mode and self.local_execute() -> self.execute(native_vals) -> 1) -> task function() or 2) -> self.run_with_backend() # fn name will be changed. b) inside an eager task local execution - calling normal_task() -> call handler detects in eager local execution (middle part of call handler) -> call normal_task’s local_execute() c) inside an eager task local execution - calling async_normal_task() -> produces a coro, which when awaited/run -> call handler detects in eager local execution (middle part of call handler) -> call async_normal_task’s local_execute() -> call AsyncPythonFunctionTask’s async_execute(), which awaits the task function d) inside an eager task local execution - calling another_eager_task() -> produces a coro, which when awaited/run -> call handler detects in eager local execution (middle part of call handler) -> call another_eager_task’s local_execute() -> results are returned instead of being passed to create_native_named_tuple d) eager_task, starting backend execution from entrypoint.py -> eager_task.dispatch_execute(literals) -> eager_task.execute(native values) -> awaits eager_task.run_with_backend() # fn name will be changed e) in an eager task during backend execution, calling any flyte_entity() -> add the entity to the worker queue and await the result.

Parameter Type
args *args
kwargs **kwargs

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
):

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

compile_into_workflow()

def compile_into_workflow(
    ctx: FlyteContext,
    task_function: Callable,
    kwargs,
):

In the case of dynamic workflows, this function will produce a workflow definition at execution time which will then proceed to be executed.

Parameter Type
ctx FlyteContext
task_function Callable
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.

  • VoidPromise is returned in the case when the task itself declares no outputs.
  • Literal Map is returned when the task returns either one more outputs in the declaration. Individual outputs may be none
  • DynamicJobSpec is returned when a dynamic workflow is executed
Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

dynamic_execute()

def dynamic_execute(
    task_function: Callable,
    kwargs,
):

By the time this function is invoked, the local_execute function should have unwrapped the Promises and Flyte literal wrappers so that the kwargs we are working with here are now Python native literal values. This function is also expected to return Python native literal values.

Since the user code within a dynamic task constitute a workflow, we have to first compile the workflow, and then execute that workflow.

When running for real in production, the task would stop after the compilation step, and then create a file representing that newly generated workflow, instead of executing it.

Parameter Type
task_function Callable
kwargs **kwargs

execute()

def execute(
    kwargs,
):

Overrides the base execute function. This function does not handle dynamic at all. Eager and dynamic don’t mix.

Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_as_workflow()

def get_as_workflow()

get_command()

def get_command(
    settings: SerializationSettings,
):

Returns the command which should be used in the container definition for the serialized version of this task registered on a hosted Flyte platform.

Parameter Type
settings SerializationSettings

get_config()

def get_config(
    settings: SerializationSettings,
):

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings SerializationSettings

get_container()

def get_container(
    settings: SerializationSettings,
):

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
):

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_default_command()

def get_default_command(
    settings: SerializationSettings,
):

Returns the default pyflyte-execute command used to run this on hosted Flyte platforms.

Parameter Type
settings SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: SerializationSettings,
):

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_image()

def get_image(
    settings: SerializationSettings,
):

Update image spec based on fast registration usage, and return string representing the image

Parameter Type
settings SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: SerializationSettings,
):

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
):

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
):

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
):

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
    rval: typing.Any,
):

Post execute is called after the execution has completed, with the user_params and can be used to clean-up, or alter the outputs to match the intended tasks outputs. If not overridden, then this function is a No-op

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]
rval typing.Any

pre_execute()

def pre_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
):

This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called

This should return either the same context of the mutated context

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]

reset_command_fn()

def reset_command_fn()

Resets the command which should be used in the container definition of this task to the default arguments. This is useful when the command line is overridden at serialization time.

run()

def run(
    remote: 'FlyteRemote',
    ss: SerializationSettings,
    kwargs,
):

This is a helper function to help run eager parent tasks locally, pointing to a remote cluster. This is used only for local testing for now.

Parameter Type
remote 'FlyteRemote'
ss SerializationSettings
kwargs **kwargs

run_with_backend()

def run_with_backend(
    kwargs,
):

This is the main entry point to kick off a live run. Like if you’re running locally, but want to use a Flyte backend, or running for real on a Flyte backend.

Parameter Type
kwargs **kwargs

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

set_command_fn()

def set_command_fn(
    get_command_fn: Optional[Callable[[SerializationSettings], List[str]]],
):

By default, the task will run on the Flyte platform using the pyflyte-execute command. However, it can be useful to update the command with which the task is serialized for specific cases like running map tasks (“pyflyte-map-execute”) or for fast-executed tasks.

Parameter Type
get_command_fn Optional[Callable[[SerializationSettings], List[str]]]

set_resolver()

def set_resolver(
    resolver: TaskResolverMixin,
):

By default, flytekit uses the DefaultTaskResolver to resolve the task. This method allows the user to set a custom task resolver. It can be useful to override the task resolver for specific cases like running tasks in the jupyter notebook.

Parameter Type
resolver TaskResolverMixin

Properties

Property Type Description
container_image
deck_fields
disable_deck
docs
enable_deck
environment
execution_mode
instantiated_in
interface
lhs
location
metadata
name
node_dependency_hints
python_interface
resources
security_context
task_config
task_function
task_resolver
task_type
task_type_version

flytekit.core.python_function_task.EagerException

Raised when a node in an eager workflow encounters an error.

This exception should be used in an :py:func:@eager <flytekit.core.task.eager> workflow function to catch exceptions that are raised by tasks or subworkflows.

.. code-block:: python

from flytekit import task from flytekit.exceptions.eager import EagerException

@task def add_one(x: int) -> int: if x < 0: raise ValueError(“x must be positive”) return x + 1

@task def double(x: int) -> int: return x * 2

@eager async def eager_workflow(x: int) -> int: try: out = await add_one(x=x) except EagerException:

The ValueError error is caught

and raised as an EagerException

raise return await double(x=out)

flytekit.core.python_function_task.EagerFailureHandlerTask

A Python AutoContainer task should be used as the base for all extensions that want the user’s code to be in the container and the container information to be automatically captured. This base will auto configure the image and image version to be used for all its derivatives.

If you are looking to extend, you might prefer to use PythonFunctionTask or PythonInstanceTask

def EagerFailureHandlerTask(
    name: str,
    container_image: Optional[Union[str, ImageSpec]],
    inputs: typing.Optional[typing.Dict[str, typing.Type]],
    kwargs,
):
Parameter Type
name str
container_image Optional[Union[str, ImageSpec]]
inputs typing.Optional[typing.Dict[str, typing.Type]]
kwargs **kwargs

Methods

Method Description
compile() Generates a node that encapsulates this task in a workflow definition
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition
dispatch_execute() This task should only be called during remote execution
execute() This method will be invoked to execute the task
find_lhs() None
get_command() Returns the command which should be used in the container definition for the serialized version of this task
get_config() Returns the task config as a serializable dictionary
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary
get_default_command() Returns the default pyflyte-execute command used to run this on hosted Flyte platforms
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte
get_image() Update image spec based on fast registration usage, and return string representing the image
get_input_types() Returns the names and python types as a dictionary for the inputs of this task
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte
get_type_for_input_var() Returns the python type for an input variable by name
get_type_for_output_var() Returns the python type for the specified output variable by name
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute
local_execution_mode() None
post_execute() Post execute is called after the execution has completed, with the user_params and can be used to clean-up,
pre_execute() This is the method that will be invoked directly before executing the task method and before all the inputs
reset_command_fn() Resets the command which should be used in the container definition of this task to the default arguments
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution
set_command_fn() By default, the task will run on the Flyte platform using the pyflyte-execute command
set_resolver() By default, flytekit uses the DefaultTaskResolver to resolve the task

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
):

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: FlyteContext,
    input_literal_map: LiteralMap,
):

This task should only be called during remote execution. Because when rehydrating this task at execution time, we don’t have access to the python interface of the corresponding eager task/workflow, we don’t have the Python types to convert the input literal map, but nor do we need them. This task is responsible only for ensuring that all executions are terminated.

Parameter Type
ctx FlyteContext
input_literal_map LiteralMap

execute()

def execute(
    kwargs,
):

This method will be invoked to execute the task.

Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_command()

def get_command(
    settings: SerializationSettings,
):

Returns the command which should be used in the container definition for the serialized version of this task registered on a hosted Flyte platform.

Parameter Type
settings SerializationSettings

get_config()

def get_config(
    settings: SerializationSettings,
):

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings SerializationSettings

get_container()

def get_container(
    settings: SerializationSettings,
):

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
):

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_default_command()

def get_default_command(
    settings: SerializationSettings,
):

Returns the default pyflyte-execute command used to run this on hosted Flyte platforms.

Parameter Type
settings SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: SerializationSettings,
):

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_image()

def get_image(
    settings: SerializationSettings,
):

Update image spec based on fast registration usage, and return string representing the image

Parameter Type
settings SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: SerializationSettings,
):

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
):

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
):

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
):

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
    rval: typing.Any,
):

Post execute is called after the execution has completed, with the user_params and can be used to clean-up, or alter the outputs to match the intended tasks outputs. If not overridden, then this function is a No-op

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]
rval typing.Any

pre_execute()

def pre_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
):

This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called

This should return either the same context of the mutated context

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]

reset_command_fn()

def reset_command_fn()

Resets the command which should be used in the container definition of this task to the default arguments. This is useful when the command line is overridden at serialization time.

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

set_command_fn()

def set_command_fn(
    get_command_fn: Optional[Callable[[SerializationSettings], List[str]]],
):

By default, the task will run on the Flyte platform using the pyflyte-execute command. However, it can be useful to update the command with which the task is serialized for specific cases like running map tasks (“pyflyte-map-execute”) or for fast-executed tasks.

Parameter Type
get_command_fn Optional[Callable[[SerializationSettings], List[str]]]

set_resolver()

def set_resolver(
    resolver: TaskResolverMixin,
):

By default, flytekit uses the DefaultTaskResolver to resolve the task. This method allows the user to set a custom task resolver. It can be useful to override the task resolver for specific cases like running tasks in the jupyter notebook.

Parameter Type
resolver TaskResolverMixin

Properties

Property Type Description
container_image
deck_fields
disable_deck
docs
enable_deck
environment
instantiated_in
interface
lhs
location
metadata
name
python_interface
resources
security_context
task_config
task_resolver
task_type
task_type_version

flytekit.core.python_function_task.EagerFailureTaskResolver

Flytekit tasks interact with the Flyte platform very, very broadly in two steps. They need to be uploaded to Admin, and then they are run by the user upon request (either as a single task execution or as part of a workflow). In any case, at execution time, for most tasks (that is those that generate a container target) the container image containing the task needs to be spun up again at which point the container needs to know which task it’s supposed to run and how to rehydrate the task object.

For example, the serialization of a simple task ::

in repo_root/workflows/example.py

@task def t1(…) -> …: …

might result in a container with arguments like ::

pyflyte-execute –inputs s3://path/inputs.pb –output-prefix s3://outputs/location –raw-output-data-prefix /tmp/data –resolver flytekit.core.python_auto_container.default_task_resolver – task-module repo_root.workflows.example task-name t1

At serialization time, the container created for the task will start out automatically with the pyflyte-execute bit, along with the requisite input/output args and the offloaded data prefix. Appended to that will be two things,

#. the location of the task’s task resolver, followed by two dashes, followed by #. the arguments provided by calling the loader_args function below.

The default_task_resolver declared below knows that

  • When loader_args is called on a task, to look up the module the task is in, and the name of the task (the key of the task in the module, either the function name, or the variable it was assigned to).
  • When load_task is called, it interprets the first part of the command as the module to call importlib.import_module on, and then looks for a key t1.

This is just the default behavior. Users should feel free to implement their own resolvers.

Methods

Method Description
get_all_tasks() Future proof method
load_task() Given the set of identifier keys, should return one Python Task or raise an error if not found
loader_args() Return a list of strings that can help identify the parameter Task
name() None
task_name() Overridable function that can optionally return a custom name for a given task

get_all_tasks()

def get_all_tasks()

Future proof method. Just making it easy to access all tasks (Not required today as we auto register them)

load_task()

def load_task(
    loader_args: List[str],
):

Given the set of identifier keys, should return one Python Task or raise an error if not found

Parameter Type
loader_args List[str]

loader_args()

def loader_args(
    settings: SerializationSettings,
    t: Task,
):

Return a list of strings that can help identify the parameter Task

Parameter Type
settings SerializationSettings
t Task

name()

def name()

task_name()

def task_name(
    t: flytekit.core.base_task.Task,
):

Overridable function that can optionally return a custom name for a given task

Parameter Type
t flytekit.core.base_task.Task

Properties

Property Type Description
location

flytekit.core.python_function_task.Enum

Create a collection of name/value pairs.

Example enumeration:

class Color(Enum): … RED = 1 … BLUE = 2 … GREEN = 3

Access them by:

  • attribute access:

Color.RED <Color.RED: 1>

  • value lookup:

Color(1) <Color.RED: 1>

  • name lookup:

Color[‘RED’] <Color.RED: 1>

Enumerations can be iterated over, and know how many members they have:

len(Color) 3

list(Color) [<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own attributes – see the documentation for details.

flytekit.core.python_function_task.ExecutionState

This is the context that is active when executing a task or a local workflow. This carries the necessary state to execute. Some required things during execution deal with temporary directories, ExecutionParameters that are passed to the user etc.

Attributes: mode (ExecutionState.Mode): Defines the context in which the task is executed (local, hosted, etc). working_dir (os.PathLike): Specifies the remote, external directory where inputs, outputs and other protobufs are uploaded engine_dir (os.PathLike): branch_eval_mode Optional[BranchEvalMode]: Used to determine whether a branch node should execute. user_space_params Optional[ExecutionParameters]: Provides run-time, user-centric context such as a statsd handler, a logging handler, the current execution id and a working directory.

def ExecutionState(
    working_dir: Union[os.PathLike, str],
    mode: Optional[ExecutionState.Mode],
    engine_dir: Optional[Union[os.PathLike, str]],
    branch_eval_mode: Optional[BranchEvalMode],
    user_space_params: Optional[ExecutionParameters],
):
Parameter Type
working_dir Union[os.PathLike, str]
mode Optional[ExecutionState.Mode]
engine_dir Optional[Union[os.PathLike, str]]
branch_eval_mode Optional[BranchEvalMode]
user_space_params Optional[ExecutionParameters]

Methods

Method Description
branch_complete() Indicates that we are within a conditional / ifelse block and the active branch is not done
is_local_execution() None
take_branch() Indicates that we are within an if-else block and the current branch has evaluated to true
with_params() Produces a copy of the current execution state and overrides the copy’s parameters with passed parameter values

branch_complete()

def branch_complete()

Indicates that we are within a conditional / ifelse block and the active branch is not done. Default to SKIPPED

is_local_execution()

def is_local_execution()

take_branch()

def take_branch()

Indicates that we are within an if-else block and the current branch has evaluated to true. Useful only in local execution mode

with_params()

def with_params(
    working_dir: Optional[os.PathLike],
    mode: Optional[Mode],
    engine_dir: Optional[os.PathLike],
    branch_eval_mode: Optional[BranchEvalMode],
    user_space_params: Optional[ExecutionParameters],
):

Produces a copy of the current execution state and overrides the copy’s parameters with passed parameter values.

Parameter Type
working_dir Optional[os.PathLike]
mode Optional[Mode]
engine_dir Optional[os.PathLike]
branch_eval_mode Optional[BranchEvalMode]
user_space_params Optional[ExecutionParameters]

flytekit.core.python_function_task.FlyteContext

This is an internal-facing context object, that most users will not have to deal with. It’s essentially a globally available grab bag of settings and objects that allows flytekit to do things like convert complex types, run and compile workflows, serialize Flyte entities, etc.

Even though this object as a current_context function on it, it should not be called directly. Please use the :py:class:flytekit.FlyteContextManager object instead.

Please do not confuse this object with the :py:class:flytekit.ExecutionParameters object.

def FlyteContext(
    file_access: FileAccessProvider,
    level: int,
    flyte_client: Optional['friendly_client.SynchronousFlyteClient'],
    compilation_state: Optional[CompilationState],
    execution_state: Optional[ExecutionState],
    serialization_settings: Optional[SerializationSettings],
    in_a_condition: bool,
    origin_stackframe: Optional[traceback.FrameSummary],
    output_metadata_tracker: Optional[OutputMetadataTracker],
    worker_queue: Optional[Controller],
):
Parameter Type
file_access FileAccessProvider
level int
flyte_client Optional['friendly_client.SynchronousFlyteClient']
compilation_state Optional[CompilationState]
execution_state Optional[ExecutionState]
serialization_settings Optional[SerializationSettings]
in_a_condition bool
origin_stackframe Optional[traceback.FrameSummary]
output_metadata_tracker Optional[OutputMetadataTracker]
worker_queue Optional[Controller]

Methods

Method Description
current_context() This method exists only to maintain backwards compatibility
enter_conditional_section() None
get_deck() Returns the deck that was created as part of the last execution
get_origin_stackframe_repr() None
new_builder() None
new_compilation_state() Creates and returns a default compilation state
new_execution_state() Creates and returns a new default execution state
set_stackframe() None
with_client() None
with_compilation_state() None
with_execution_state() None
with_file_access() None
with_new_compilation_state() None
with_output_metadata_tracker() None
with_serialization_settings() None
with_worker_queue() None

current_context()

def current_context()

This method exists only to maintain backwards compatibility. Please use FlyteContextManager.current_context() instead.

Users of flytekit should be wary not to confuse the object returned from this function with :py:func:flytekit.current_context

enter_conditional_section()

def enter_conditional_section()

get_deck()

def get_deck()

Returns the deck that was created as part of the last execution.

The return value depends on the execution environment. In a notebook, the return value is compatible with IPython.display and should be rendered in the notebook.

.. code-block:: python

with flytekit.new_context() as ctx: my_task(…) ctx.get_deck()

OR if you wish to explicitly display

.. code-block:: python

from IPython import display display(ctx.get_deck())

get_origin_stackframe_repr()

def get_origin_stackframe_repr()

new_builder()

def new_builder()

new_compilation_state()

def new_compilation_state(
    prefix: str,
):

Creates and returns a default compilation state. For most of the code this should be the entrypoint of compilation, otherwise the code should always uses - with_compilation_state

Parameter Type
prefix str

new_execution_state()

def new_execution_state(
    working_dir: Optional[os.PathLike],
):

Creates and returns a new default execution state. This should be used at the entrypoint of execution, in all other cases it is preferable to use with_execution_state

Parameter Type
working_dir Optional[os.PathLike]

set_stackframe()

def set_stackframe(
    s: traceback.FrameSummary,
):
Parameter Type
s traceback.FrameSummary

with_client()

def with_client(
    c: SynchronousFlyteClient,
):
Parameter Type
c SynchronousFlyteClient

with_compilation_state()

def with_compilation_state(
    c: CompilationState,
):
Parameter Type
c CompilationState

with_execution_state()

def with_execution_state(
    es: ExecutionState,
):
Parameter Type
es ExecutionState

with_file_access()

def with_file_access(
    fa: FileAccessProvider,
):
Parameter Type
fa FileAccessProvider

with_new_compilation_state()

def with_new_compilation_state()

with_output_metadata_tracker()

def with_output_metadata_tracker(
    t: OutputMetadataTracker,
):
Parameter Type
t OutputMetadataTracker

with_serialization_settings()

def with_serialization_settings(
    ss: SerializationSettings,
):
Parameter Type
ss SerializationSettings

with_worker_queue()

def with_worker_queue(
    wq: Controller,
):
Parameter Type
wq Controller

Properties

Property Type Description
user_space_params

flytekit.core.python_function_task.FlyteContextManager

FlyteContextManager manages the execution context within Flytekit. It holds global state of either compilation or Execution. It is not thread-safe and can only be run as a single threaded application currently. Context’s within Flytekit is useful to manage compilation state and execution state. Refer to CompilationState and ExecutionState for more information. FlyteContextManager provides a singleton stack to manage these contexts.

Typical usage is

.. code-block:: python

FlyteContextManager.initialize() with FlyteContextManager.with_context(o) as ctx: pass

If required - not recommended you can use

FlyteContextManager.push_context()

but correspondingly a pop_context should be called

FlyteContextManager.pop_context()

Methods

Method Description
add_signal_handler() None
current_context() None
get_origin_stackframe() None
initialize() Re-initializes the context and erases the entire context
pop_context() None
push_context() None
size() None
with_context() None

add_signal_handler()

def add_signal_handler(
    handler: typing.Callable[[int, FrameType], typing.Any],
):
Parameter Type
handler typing.Callable[[int, FrameType], typing.Any]

current_context()

def current_context()

get_origin_stackframe()

def get_origin_stackframe(
    limit,
):
Parameter Type
limit

initialize()

def initialize()

Re-initializes the context and erases the entire context

pop_context()

def pop_context()

push_context()

def push_context(
    ctx: FlyteContext,
    f: Optional[traceback.FrameSummary],
):
Parameter Type
ctx FlyteContext
f Optional[traceback.FrameSummary]

size()

def size()

with_context()

def with_context(
    b: FlyteContext.Builder,
):
Parameter Type
b FlyteContext.Builder

flytekit.core.python_function_task.FlyteNonRecoverableSystemException

Common base class for all non-exit exceptions.

def FlyteNonRecoverableSystemException(
    exc_value: Exception,
):

FlyteNonRecoverableSystemException is thrown when a system code raises an exception.

Parameter Type
exc_value Exception

Properties

Property Type Description
timestamp
value

flytekit.core.python_function_task.FlyteTrackedABC

This class exists because if you try to inherit from abc.ABC and TrackedInstance by itself, you’ll get the well-known TypeError: metaclass conflict: the metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its bases error.

Methods

Method Description
register() Register a virtual subclass of an ABC

register()

def register(
    cls,
    subclass,
):

Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

Parameter Type
cls
subclass

flytekit.core.python_function_task.FlyteValueException

Inappropriate argument value (of correct type).

def FlyteValueException(
    received_value,
    error_message,
):
Parameter Type
received_value
error_message

Properties

Property Type Description
timestamp

flytekit.core.python_function_task.ImageConfig

We recommend you to use ImageConfig.auto(img_name=None) to create an ImageConfig. For example, ImageConfig.auto(img_name=““ghcr.io/flyteorg/flytecookbook:v1.0.0"”) will create an ImageConfig.

ImageConfig holds available images which can be used at registration time. A default image can be specified along with optional additional images. Each image in the config must have a unique name.

Attributes: default_image (Optional[Image]): The default image to be used as a container for task serialization. images (List[Image]): Optional, additional images which can be used in task container definitions.

def ImageConfig(
    default_image: Optional[Image],
    images: Optional[List[Image]],
):
Parameter Type
default_image Optional[Image]
images Optional[List[Image]]

Methods

Method Description
auto() Reads from config file or from img_name
auto_default_image() None
create_from() None
find_image() Return an image, by name, if it exists
from_dict() None
from_images() Allows you to programmatically create an ImageConfig
from_json() None
schema() None
to_dict() None
to_json() None
validate_image() Validates the image to match the standard format

auto()

def auto(
    config_file: typing.Union[str, ConfigFile, None],
    img_name: Optional[str],
):

Reads from config file or from img_name Note that this function does not take into account the flytekit default images (see the Dockerfiles at the base of this repo). To pick those up, see the auto_default_image function..

Parameter Type
config_file typing.Union[str, ConfigFile, None]
img_name Optional[str]

auto_default_image()

def auto_default_image()

create_from()

def create_from(
    default_image: Optional[Image],
    other_images: typing.Optional[typing.List[Image]],
):
Parameter Type
default_image Optional[Image]
other_images typing.Optional[typing.List[Image]]

find_image()

def find_image(
    name,
):

Return an image, by name, if it exists.

Parameter Type
name

from_dict()

def from_dict(
    kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
    infer_missing,
):
Parameter Type
kvs typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing

from_images()

def from_images(
    default_image: str,
    m: typing.Optional[typing.Dict[str, str]],
):

Allows you to programmatically create an ImageConfig. Usually only the default_image is required, unless your workflow uses multiple images

.. code:: python

ImageConfig.from_dict( “ghcr.io/flyteorg/flytecookbook:v1.0.0”, { “spark”: “ghcr.io/flyteorg/myspark:…”, “other”: “…”, } )

urn:

Parameter Type
default_image str
m typing.Optional[typing.Dict[str, str]]

from_json()

def from_json(
    s: typing.Union[str, bytes, bytearray],
    parse_float,
    parse_int,
    parse_constant,
    infer_missing,
    kw,
):
Parameter Type
s typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw

schema()

def schema(
    infer_missing: bool,
    only,
    exclude,
    many: bool,
    context,
    load_only,
    dump_only,
    partial: bool,
    unknown,
):
Parameter Type
infer_missing bool
only
exclude
many bool
context
load_only
dump_only
partial bool
unknown

to_dict()

def to_dict(
    encode_json,
):
Parameter Type
encode_json

to_json()

def to_json(
    skipkeys: bool,
    ensure_ascii: bool,
    check_circular: bool,
    allow_nan: bool,
    indent: typing.Union[int, str, NoneType],
    separators: typing.Tuple[str, str],
    default: typing.Callable,
    sort_keys: bool,
    kw,
):
Parameter Type
skipkeys bool
ensure_ascii bool
check_circular bool
allow_nan bool
indent typing.Union[int, str, NoneType]
separators typing.Tuple[str, str]
default typing.Callable
sort_keys bool
kw

validate_image()

def validate_image(
    _: typing.Any,
    param: str,
    values: tuple,
):

Validates the image to match the standard format. Also validates that only one default image is provided. a default image, is one that is specified as default=<image_uri> or just <image_uri>. All other images should be provided with a name, in the format name=<image_uri> This method can be used with the CLI

Parameter Type
_ typing.Any
param str
values tuple

flytekit.core.python_function_task.ImageSpec

This class is used to specify the docker image that will be used to run the task.

def ImageSpec(
    name: str,
    python_version: str,
    builder: typing.Optional[str],
    source_root: typing.Optional[str],
    env: typing.Optional[typing.Dict[str, str]],
    registry: typing.Optional[str],
    packages: typing.Optional[typing.List[str]],
    conda_packages: typing.Optional[typing.List[str]],
    conda_channels: typing.Optional[typing.List[str]],
    requirements: typing.Optional[str],
    apt_packages: typing.Optional[typing.List[str]],
    cuda: typing.Optional[str],
    cudnn: typing.Optional[str],
    base_image: typing.Union[str, ForwardRef('ImageSpec'), NoneType],
    platform: str,
    pip_index: typing.Optional[str],
    pip_extra_index_url: typing.Optional[typing.List[str]],
    pip_secret_mounts: typing.Optional[typing.List[typing.Tuple[str, str]]],
    pip_extra_args: typing.Optional[str],
    registry_config: typing.Optional[str],
    entrypoint: typing.Optional[typing.List[str]],
    commands: typing.Optional[typing.List[str]],
    tag_format: typing.Optional[str],
    source_copy_mode: typing.Optional[flytekit.constants.CopyFileDetection],
    copy: typing.Optional[typing.List[str]],
    python_exec: typing.Optional[str],
):
Parameter Type
name str
python_version str
builder typing.Optional[str]
source_root typing.Optional[str]
env typing.Optional[typing.Dict[str, str]]
registry typing.Optional[str]
packages typing.Optional[typing.List[str]]
conda_packages typing.Optional[typing.List[str]]
conda_channels typing.Optional[typing.List[str]]
requirements typing.Optional[str]
apt_packages typing.Optional[typing.List[str]]
cuda typing.Optional[str]
cudnn typing.Optional[str]
base_image typing.Union[str, ForwardRef('ImageSpec'), NoneType]
platform str
pip_index typing.Optional[str]
pip_extra_index_url typing.Optional[typing.List[str]]
pip_secret_mounts typing.Optional[typing.List[typing.Tuple[str, str]]]
pip_extra_args typing.Optional[str]
registry_config typing.Optional[str]
entrypoint typing.Optional[typing.List[str]]
commands typing.Optional[typing.List[str]]
tag_format typing.Optional[str]
source_copy_mode typing.Optional[flytekit.constants.CopyFileDetection]
copy typing.Optional[typing.List[str]]
python_exec typing.Optional[str]

Methods

Method Description
exist() Check if the image exists in the registry
force_push() Builder that returns a new image spec with force push enabled
from_env() Create ImageSpec with the environment’s Python version and packages pinned to the ones in the environment
image_name() Full image name with tag
is_container() Check if the current container image in the pod is built from current image spec
with_apt_packages() Builder that returns a new image spec with an additional list of apt packages that will be executed during the building process
with_commands() Builder that returns a new image spec with an additional list of commands that will be executed during the building process
with_copy() Builder that returns a new image spec with the source files copied to the destination directory
with_packages() Builder that returns a new image speck with additional python packages that will be installed during the building process

exist()

def exist()

Check if the image exists in the registry. Return True if the image exists in the registry, False otherwise. Return None if failed to check if the image exists due to the permission issue or other reasons.

force_push()

def force_push()

Builder that returns a new image spec with force push enabled.

from_env()

def from_env(
    pinned_packages: typing.Optional[typing.List[str]],
    kwargs,
):

Create ImageSpec with the environment’s Python version and packages pinned to the ones in the environment.

Parameter Type
pinned_packages typing.Optional[typing.List[str]]
kwargs **kwargs

image_name()

def image_name()

Full image name with tag.

is_container()

def is_container()

Check if the current container image in the pod is built from current image spec. :return: True if the current container image in the pod is built from current image spec, False otherwise.

with_apt_packages()

def with_apt_packages(
    apt_packages: typing.Union[str, typing.List[str]],
):

Builder that returns a new image spec with an additional list of apt packages that will be executed during the building process.

Parameter Type
apt_packages typing.Union[str, typing.List[str]]

with_commands()

def with_commands(
    commands: typing.Union[str, typing.List[str]],
):

Builder that returns a new image spec with an additional list of commands that will be executed during the building process.

Parameter Type
commands typing.Union[str, typing.List[str]]

with_copy()

def with_copy(
    src: typing.Union[str, typing.List[str]],
):

Builder that returns a new image spec with the source files copied to the destination directory.

Parameter Type
src typing.Union[str, typing.List[str]]

with_packages()

def with_packages(
    packages: typing.Union[str, typing.List[str]],
):

Builder that returns a new image speck with additional python packages that will be installed during the building process.

Parameter Type
packages typing.Union[str, typing.List[str]]

Properties

Property Type Description
tag

flytekit.core.python_function_task.Interface

A Python native interface object, like inspect.signature but simpler.

def Interface(
    inputs: Union[Optional[Dict[str, Type]], Optional[Dict[str, Tuple[Type, Any]]]],
    outputs: Union[Optional[Dict[str, Type]], Optional[Dict[str, Optional[Type]]]],
    output_tuple_name: Optional[str],
    docstring: Optional[Docstring],
):
Parameter Type
inputs Union[Optional[Dict[str, Type]], Optional[Dict[str, Tuple[Type, Any]]]]
outputs Union[Optional[Dict[str, Type]], Optional[Dict[str, Optional[Type]]]]
output_tuple_name Optional[str]
docstring Optional[Docstring]

Methods

Method Description
remove_inputs() This method is useful in removing some variables from the Flyte backend inputs specification, as these are
with_inputs() Use this to add additional inputs to the interface
with_outputs() This method allows addition of extra outputs are expected from a task specification

remove_inputs()

def remove_inputs(
    vars: Optional[List[str]],
):

This method is useful in removing some variables from the Flyte backend inputs specification, as these are implicit local only inputs or will be supplied by the library at runtime. For example, spark-session etc It creates a new instance of interface with the requested variables removed

Parameter Type
vars Optional[List[str]]

with_inputs()

def with_inputs(
    extra_inputs: Dict[str, Type],
):

Use this to add additional inputs to the interface. This is useful for adding additional implicit inputs that are added without the user requesting for them

Parameter Type
extra_inputs Dict[str, Type]

with_outputs()

def with_outputs(
    extra_outputs: Dict[str, Type],
):

This method allows addition of extra outputs are expected from a task specification

Parameter Type
extra_outputs Dict[str, Type]

Properties

Property Type Description
default_inputs_as_kwargs
docstring
inputs
inputs_with_defaults
output_names
output_tuple
output_tuple_name
outputs

flytekit.core.python_function_task.LiteralMap

def LiteralMap(
    literals,
):
Parameter Type
literals

Methods

Method Description
from_flyte_idl()
serialize_to_string() None
short_string()
to_flyte_idl()
verbose_string()

from_flyte_idl()

def from_flyte_idl(
    pb2_object,
):
Parameter Type
pb2_object

serialize_to_string()

def serialize_to_string()

short_string()

def short_string()

to_flyte_idl()

def to_flyte_idl()

verbose_string()

def verbose_string()

Properties

Property Type Description
is_empty
literals

flytekit.core.python_function_task.OrderedDict

Dictionary that remembers insertion order

flytekit.core.python_function_task.Promise

This object is a wrapper and exists for three main reasons. Let’s assume we’re dealing with a task like ::

@task def t1() -> (int, str): …

#. Handling the duality between compilation and local execution - when the task function is run in a local execution mode inside a workflow function, a Python integer and string are produced. When the task is being compiled as part of the workflow, the task call creates a Node instead, and the task returns two Promise objects that point to that Node. #. One needs to be able to call ::

x = t1().with_overrides(…)

If the task returns an integer or a (int, str) tuple like t1 above, calling with_overrides on the result would throw an error. This Promise object adds that. #. Assorted handling for conditionals.

def Promise(
    var: str,
    val: Union[NodeOutput, _literals_models.Literal],
    type: typing.Optional[_type_models.LiteralType],
):
Parameter Type
var str
val Union[NodeOutput, _literals_models.Literal]
type typing.Optional[_type_models.LiteralType]

Methods

Method Description
deepcopy() None
eval() None
is_() None
is_false() None
is_none() None
is_true() None
with_overrides() None
with_var() None

deepcopy()

def deepcopy()

eval()

def eval()

is_()

def is_(
    v: bool,
):
Parameter Type
v bool

is_false()

def is_false()

is_none()

def is_none()

is_true()

def is_true()

with_overrides()

def with_overrides(
    node_name: Optional[str],
    aliases: Optional[Dict[str, str]],
    requests: Optional[Resources],
    limits: Optional[Resources],
    timeout: Optional[Union[int, datetime.timedelta, object]],
    retries: Optional[int],
    interruptible: Optional[bool],
    name: Optional[str],
    task_config: Optional[Any],
    container_image: Optional[str],
    accelerator: Optional[BaseAccelerator],
    cache: Optional[bool],
    cache_version: Optional[str],
    cache_serialize: Optional[bool],
    args,
    kwargs,
):
Parameter Type
node_name Optional[str]
aliases Optional[Dict[str, str]]
requests Optional[Resources]
limits Optional[Resources]
timeout Optional[Union[int, datetime.timedelta, object]]
retries Optional[int]
interruptible Optional[bool]
name Optional[str]
task_config Optional[Any]
container_image Optional[str]
accelerator Optional[BaseAccelerator]
cache Optional[bool]
cache_version Optional[str]
cache_serialize Optional[bool]
args *args
kwargs **kwargs

with_var()

def with_var(
    new_var: str,
):
Parameter Type
new_var str

Properties

Property Type Description
attr_path
is_ready
ref
val
var

flytekit.core.python_function_task.PythonAutoContainerTask

A Python AutoContainer task should be used as the base for all extensions that want the user’s code to be in the container and the container information to be automatically captured. This base will auto configure the image and image version to be used for all its derivatives.

If you are looking to extend, you might prefer to use PythonFunctionTask or PythonInstanceTask

def PythonAutoContainerTask(
    name: str,
    task_config: T,
    task_type,
    container_image: Optional[Union[str, ImageSpec]],
    requests: Optional[Resources],
    limits: Optional[Resources],
    environment: Optional[Dict[str, str]],
    task_resolver: Optional[TaskResolverMixin],
    secret_requests: Optional[List[Secret]],
    pod_template: Optional[PodTemplate],
    pod_template_name: Optional[str],
    accelerator: Optional[BaseAccelerator],
    shared_memory: Optional[Union[L[True], str]],
    resources: Optional[Resources],
    kwargs,
):
Parameter Type
name str
task_config T
task_type
container_image Optional[Union[str, ImageSpec]]
requests Optional[Resources]
limits Optional[Resources]
environment Optional[Dict[str, str]]
task_resolver Optional[TaskResolverMixin]
secret_requests Optional[List[Secret]]
pod_template Optional[PodTemplate]
pod_template_name Optional[str]
accelerator Optional[BaseAccelerator]
shared_memory Optional[Union[L[True], str]]
resources Optional[Resources]
kwargs **kwargs

Methods

Method Description
compile() Generates a node that encapsulates this task in a workflow definition
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition
dispatch_execute() This method translates Flyte’s Type system based input values and invokes the actual call to the executor
execute() This method will be invoked to execute the task
find_lhs() None
get_command() Returns the command which should be used in the container definition for the serialized version of this task
get_config() Returns the task config as a serializable dictionary
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary
get_default_command() Returns the default pyflyte-execute command used to run this on hosted Flyte platforms
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte
get_image() Update image spec based on fast registration usage, and return string representing the image
get_input_types() Returns the names and python types as a dictionary for the inputs of this task
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte
get_type_for_input_var() Returns the python type for an input variable by name
get_type_for_output_var() Returns the python type for the specified output variable by name
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute
local_execution_mode() None
post_execute() Post execute is called after the execution has completed, with the user_params and can be used to clean-up,
pre_execute() This is the method that will be invoked directly before executing the task method and before all the inputs
reset_command_fn() Resets the command which should be used in the container definition of this task to the default arguments
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution
set_command_fn() By default, the task will run on the Flyte platform using the pyflyte-execute command
set_resolver() By default, flytekit uses the DefaultTaskResolver to resolve the task

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
):

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.

  • VoidPromise is returned in the case when the task itself declares no outputs.
  • Literal Map is returned when the task returns either one more outputs in the declaration. Individual outputs may be none
  • DynamicJobSpec is returned when a dynamic workflow is executed
Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

execute()

def execute(
    kwargs,
):

This method will be invoked to execute the task.

Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_command()

def get_command(
    settings: SerializationSettings,
):

Returns the command which should be used in the container definition for the serialized version of this task registered on a hosted Flyte platform.

Parameter Type
settings SerializationSettings

get_config()

def get_config(
    settings: SerializationSettings,
):

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings SerializationSettings

get_container()

def get_container(
    settings: SerializationSettings,
):

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
):

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_default_command()

def get_default_command(
    settings: SerializationSettings,
):

Returns the default pyflyte-execute command used to run this on hosted Flyte platforms.

Parameter Type
settings SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: SerializationSettings,
):

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_image()

def get_image(
    settings: SerializationSettings,
):

Update image spec based on fast registration usage, and return string representing the image

Parameter Type
settings SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: SerializationSettings,
):

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
):

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
):

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
):

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
    rval: typing.Any,
):

Post execute is called after the execution has completed, with the user_params and can be used to clean-up, or alter the outputs to match the intended tasks outputs. If not overridden, then this function is a No-op

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]
rval typing.Any

pre_execute()

def pre_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
):

This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called

This should return either the same context of the mutated context

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]

reset_command_fn()

def reset_command_fn()

Resets the command which should be used in the container definition of this task to the default arguments. This is useful when the command line is overridden at serialization time.

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

set_command_fn()

def set_command_fn(
    get_command_fn: Optional[Callable[[SerializationSettings], List[str]]],
):

By default, the task will run on the Flyte platform using the pyflyte-execute command. However, it can be useful to update the command with which the task is serialized for specific cases like running map tasks (“pyflyte-map-execute”) or for fast-executed tasks.

Parameter Type
get_command_fn Optional[Callable[[SerializationSettings], List[str]]]

set_resolver()

def set_resolver(
    resolver: TaskResolverMixin,
):

By default, flytekit uses the DefaultTaskResolver to resolve the task. This method allows the user to set a custom task resolver. It can be useful to override the task resolver for specific cases like running tasks in the jupyter notebook.

Parameter Type
resolver TaskResolverMixin

Properties

Property Type Description
container_image
deck_fields
disable_deck
docs
enable_deck
environment
instantiated_in
interface
lhs
location
metadata
name
python_interface
resources
security_context
task_config
task_resolver
task_type
task_type_version

flytekit.core.python_function_task.PythonFunctionTask

A Python Function task should be used as the base for all extensions that have a python function. It will automatically detect interface of the python function and when serialized on the hosted Flyte platform handles the writing execution command to execute the function

It is advised this task is used using the @task decorator as follows

.. code-block: python

@task def my_func(a: int) -> str: …

In the above code, the name of the function, the module, and the interface (inputs = int and outputs = str) will be auto detected.

def PythonFunctionTask(
    task_config: T,
    task_function: Callable,
    task_type,
    ignore_input_vars: Optional[List[str]],
    execution_mode: ExecutionBehavior,
    task_resolver: Optional[TaskResolverMixin],
    node_dependency_hints: Optional[Iterable[Union['PythonFunctionTask', '_annotated_launch_plan.LaunchPlan', WorkflowBase]]],
    pickle_untyped: bool,
    kwargs,
):
Parameter Type
task_config T
task_function Callable
task_type
ignore_input_vars Optional[List[str]]
execution_mode ExecutionBehavior
task_resolver Optional[TaskResolverMixin]
node_dependency_hints Optional[Iterable[Union['PythonFunctionTask', '_annotated_launch_plan.LaunchPlan', WorkflowBase]]]
pickle_untyped bool
kwargs **kwargs

Methods

Method Description
compile() Generates a node that encapsulates this task in a workflow definition
compile_into_workflow() In the case of dynamic workflows, this function will produce a workflow definition at execution time which will
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition
dispatch_execute() This method translates Flyte’s Type system based input values and invokes the actual call to the executor
dynamic_execute() By the time this function is invoked, the local_execute function should have unwrapped the Promises and Flyte
execute() This method will be invoked to execute the task
find_lhs() None
get_command() Returns the command which should be used in the container definition for the serialized version of this task
get_config() Returns the task config as a serializable dictionary
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary
get_default_command() Returns the default pyflyte-execute command used to run this on hosted Flyte platforms
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte
get_image() Update image spec based on fast registration usage, and return string representing the image
get_input_types() Returns the names and python types as a dictionary for the inputs of this task
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte
get_type_for_input_var() Returns the python type for an input variable by name
get_type_for_output_var() Returns the python type for the specified output variable by name
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute
local_execution_mode() None
post_execute() Post execute is called after the execution has completed, with the user_params and can be used to clean-up,
pre_execute() This is the method that will be invoked directly before executing the task method and before all the inputs
reset_command_fn() Resets the command which should be used in the container definition of this task to the default arguments
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution
set_command_fn() By default, the task will run on the Flyte platform using the pyflyte-execute command
set_resolver() By default, flytekit uses the DefaultTaskResolver to resolve the task

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
):

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

compile_into_workflow()

def compile_into_workflow(
    ctx: FlyteContext,
    task_function: Callable,
    kwargs,
):

In the case of dynamic workflows, this function will produce a workflow definition at execution time which will then proceed to be executed.

Parameter Type
ctx FlyteContext
task_function Callable
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.

  • VoidPromise is returned in the case when the task itself declares no outputs.
  • Literal Map is returned when the task returns either one more outputs in the declaration. Individual outputs may be none
  • DynamicJobSpec is returned when a dynamic workflow is executed
Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

dynamic_execute()

def dynamic_execute(
    task_function: Callable,
    kwargs,
):

By the time this function is invoked, the local_execute function should have unwrapped the Promises and Flyte literal wrappers so that the kwargs we are working with here are now Python native literal values. This function is also expected to return Python native literal values.

Since the user code within a dynamic task constitute a workflow, we have to first compile the workflow, and then execute that workflow.

When running for real in production, the task would stop after the compilation step, and then create a file representing that newly generated workflow, instead of executing it.

Parameter Type
task_function Callable
kwargs **kwargs

execute()

def execute(
    kwargs,
):

This method will be invoked to execute the task. If you do decide to override this method you must also handle dynamic tasks or you will no longer be able to use the task as a dynamic task generator.

Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_command()

def get_command(
    settings: SerializationSettings,
):

Returns the command which should be used in the container definition for the serialized version of this task registered on a hosted Flyte platform.

Parameter Type
settings SerializationSettings

get_config()

def get_config(
    settings: SerializationSettings,
):

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings SerializationSettings

get_container()

def get_container(
    settings: SerializationSettings,
):

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
):

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_default_command()

def get_default_command(
    settings: SerializationSettings,
):

Returns the default pyflyte-execute command used to run this on hosted Flyte platforms.

Parameter Type
settings SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: SerializationSettings,
):

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_image()

def get_image(
    settings: SerializationSettings,
):

Update image spec based on fast registration usage, and return string representing the image

Parameter Type
settings SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: SerializationSettings,
):

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
):

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
):

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
):

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
    rval: typing.Any,
):

Post execute is called after the execution has completed, with the user_params and can be used to clean-up, or alter the outputs to match the intended tasks outputs. If not overridden, then this function is a No-op

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]
rval typing.Any

pre_execute()

def pre_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
):

This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called

This should return either the same context of the mutated context

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]

reset_command_fn()

def reset_command_fn()

Resets the command which should be used in the container definition of this task to the default arguments. This is useful when the command line is overridden at serialization time.

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

set_command_fn()

def set_command_fn(
    get_command_fn: Optional[Callable[[SerializationSettings], List[str]]],
):

By default, the task will run on the Flyte platform using the pyflyte-execute command. However, it can be useful to update the command with which the task is serialized for specific cases like running map tasks (“pyflyte-map-execute”) or for fast-executed tasks.

Parameter Type
get_command_fn Optional[Callable[[SerializationSettings], List[str]]]

set_resolver()

def set_resolver(
    resolver: TaskResolverMixin,
):

By default, flytekit uses the DefaultTaskResolver to resolve the task. This method allows the user to set a custom task resolver. It can be useful to override the task resolver for specific cases like running tasks in the jupyter notebook.

Parameter Type
resolver TaskResolverMixin

Properties

Property Type Description
container_image
deck_fields
disable_deck
docs
enable_deck
environment
execution_mode
instantiated_in
interface
lhs
location
metadata
name
node_dependency_hints
python_interface
resources
security_context
task_config
task_function
task_resolver
task_type
task_type_version

flytekit.core.python_function_task.PythonFunctionWorkflow

Please read :std:ref:flyte:divedeep-workflows first for a high-level understanding of what workflows are in Flyte. This Python object represents a workflow defined by a function and decorated with the :py:func:@workflow <flytekit.workflow> decorator. Please see notes on that object for additional information.

def PythonFunctionWorkflow(
    workflow_function: Callable,
    metadata: WorkflowMetadata,
    default_metadata: WorkflowMetadataDefaults,
    docstring: Optional[Docstring],
    on_failure: Optional[Union[WorkflowBase, Task]],
    docs: Optional[Documentation],
    pickle_untyped: bool,
    default_options: Optional[Options],
):
Parameter Type
workflow_function Callable
metadata WorkflowMetadata
default_metadata WorkflowMetadataDefaults
docstring Optional[Docstring]
on_failure Optional[Union[WorkflowBase, Task]]
docs Optional[Documentation]
pickle_untyped bool
default_options Optional[Options]

Methods

Method Description
add() None
compile() Supply static Python native values in the kwargs if you want them to be used in the compilation
construct_node_metadata() None
execute() This function is here only to try to streamline the pattern between workflows and tasks
find_lhs() None
get_all_tasks() Future proof method
load_task() Given the set of identifier keys, should return one Python Task or raise an error if not found
loader_args() This is responsible for turning an instance of a task into args that the load_task function can reconstitute
local_execute() None
local_execution_mode() None
task_name() Overridable function that can optionally return a custom name for a given task

add()

def add(
    t: flytekit.core.python_auto_container.PythonAutoContainerTask,
):
Parameter Type
t flytekit.core.python_auto_container.PythonAutoContainerTask

compile()

def compile(
    kwargs,
):

Supply static Python native values in the kwargs if you want them to be used in the compilation. This mimics a ‘closure’ in the traditional sense of the word.

Parameter Type
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

execute()

def execute(
    kwargs,
):

This function is here only to try to streamline the pattern between workflows and tasks. Since tasks call execute from dispatch_execute which is in local_execute, workflows should also call an execute inside local_execute. This makes mocking cleaner.

Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_all_tasks()

def get_all_tasks()

Future proof method. Just making it easy to access all tasks (Not required today as we auto register them)

load_task()

def load_task(
    loader_args: typing.List[str],
):

Given the set of identifier keys, should return one Python Task or raise an error if not found

Parameter Type
loader_args typing.List[str]

loader_args()

def loader_args(
    settings: flytekit.configuration.SerializationSettings,
    t: flytekit.core.python_auto_container.PythonAutoContainerTask,
):

This is responsible for turning an instance of a task into args that the load_task function can reconstitute.

Parameter Type
settings flytekit.configuration.SerializationSettings
t flytekit.core.python_auto_container.PythonAutoContainerTask

local_execute()

def local_execute(
    ctx: FlyteContext,
    kwargs,
):
Parameter Type
ctx FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

task_name()

def task_name(
    t: PythonAutoContainerTask,
):

Overridable function that can optionally return a custom name for a given task

Parameter Type
t PythonAutoContainerTask

Properties

Property Type Description
default_options
docs
failure_node
function
instantiated_in
interface
lhs
location
name
nodes
on_failure
output_bindings
python_interface
short_name
workflow_metadata
workflow_metadata_defaults

flytekit.core.python_function_task.PythonInstanceTask

This class should be used as the base class for all Tasks that do not have a user defined function body, but have a platform defined execute method. (Execute needs to be overridden). This base class ensures that the module loader will invoke the right class automatically, by capturing the module name and variable in the module name.

.. code-block: python

x = MyInstanceTask(name=“x”, …..)

this can be invoked as

x(a=5) # depending on the interface of the defined task

def PythonInstanceTask(
    name: str,
    task_config: T,
    task_type: str,
    task_resolver: Optional[TaskResolverMixin],
    kwargs,
):

Please see class level documentation.

Parameter Type
name str
task_config T
task_type str
task_resolver Optional[TaskResolverMixin]
kwargs **kwargs

Methods

Method Description
compile() Generates a node that encapsulates this task in a workflow definition
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition
dispatch_execute() This method translates Flyte’s Type system based input values and invokes the actual call to the executor
execute() This method will be invoked to execute the task
find_lhs() None
get_command() Returns the command which should be used in the container definition for the serialized version of this task
get_config() Returns the task config as a serializable dictionary
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary
get_default_command() Returns the default pyflyte-execute command used to run this on hosted Flyte platforms
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte
get_image() Update image spec based on fast registration usage, and return string representing the image
get_input_types() Returns the names and python types as a dictionary for the inputs of this task
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte
get_type_for_input_var() Returns the python type for an input variable by name
get_type_for_output_var() Returns the python type for the specified output variable by name
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute
local_execution_mode() None
post_execute() Post execute is called after the execution has completed, with the user_params and can be used to clean-up,
pre_execute() This is the method that will be invoked directly before executing the task method and before all the inputs
reset_command_fn() Resets the command which should be used in the container definition of this task to the default arguments
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution
set_command_fn() By default, the task will run on the Flyte platform using the pyflyte-execute command
set_resolver() By default, flytekit uses the DefaultTaskResolver to resolve the task

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
):

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.

  • VoidPromise is returned in the case when the task itself declares no outputs.
  • Literal Map is returned when the task returns either one more outputs in the declaration. Individual outputs may be none
  • DynamicJobSpec is returned when a dynamic workflow is executed
Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

execute()

def execute(
    kwargs,
):

This method will be invoked to execute the task.

Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_command()

def get_command(
    settings: SerializationSettings,
):

Returns the command which should be used in the container definition for the serialized version of this task registered on a hosted Flyte platform.

Parameter Type
settings SerializationSettings

get_config()

def get_config(
    settings: SerializationSettings,
):

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings SerializationSettings

get_container()

def get_container(
    settings: SerializationSettings,
):

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
):

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_default_command()

def get_default_command(
    settings: SerializationSettings,
):

Returns the default pyflyte-execute command used to run this on hosted Flyte platforms.

Parameter Type
settings SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: SerializationSettings,
):

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_image()

def get_image(
    settings: SerializationSettings,
):

Update image spec based on fast registration usage, and return string representing the image

Parameter Type
settings SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: SerializationSettings,
):

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
):

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
):

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
):

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
    rval: typing.Any,
):

Post execute is called after the execution has completed, with the user_params and can be used to clean-up, or alter the outputs to match the intended tasks outputs. If not overridden, then this function is a No-op

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]
rval typing.Any

pre_execute()

def pre_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
):

This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called

This should return either the same context of the mutated context

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]

reset_command_fn()

def reset_command_fn()

Resets the command which should be used in the container definition of this task to the default arguments. This is useful when the command line is overridden at serialization time.

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

set_command_fn()

def set_command_fn(
    get_command_fn: Optional[Callable[[SerializationSettings], List[str]]],
):

By default, the task will run on the Flyte platform using the pyflyte-execute command. However, it can be useful to update the command with which the task is serialized for specific cases like running map tasks (“pyflyte-map-execute”) or for fast-executed tasks.

Parameter Type
get_command_fn Optional[Callable[[SerializationSettings], List[str]]]

set_resolver()

def set_resolver(
    resolver: TaskResolverMixin,
):

By default, flytekit uses the DefaultTaskResolver to resolve the task. This method allows the user to set a custom task resolver. It can be useful to override the task resolver for specific cases like running tasks in the jupyter notebook.

Parameter Type
resolver TaskResolverMixin

Properties

Property Type Description
container_image
deck_fields
disable_deck
docs
enable_deck
environment
instantiated_in
interface
lhs
location
metadata
name
python_interface
resources
security_context
task_config
task_resolver
task_type
task_type_version

flytekit.core.python_function_task.SerializationSettings

These settings are provided while serializing a workflow and task, before registration. This is required to get runtime information at serialization time, as well as some defaults.

Attributes: project (str): The project (if any) with which to register entities under. domain (str): The domain (if any) with which to register entities under. version (str): The version (if any) with which to register entities under. image_config (ImageConfig): The image config used to define task container images. env (Optional[Dict[str, str]]): Environment variables injected into task container definitions. flytekit_virtualenv_root (Optional[str]): During out of container serialize the absolute path of the flytekit virtualenv at serialization time won’t match the in-container value at execution time. This optional value is used to provide the in-container virtualenv path python_interpreter (Optional[str]): The python executable to use. This is used for spark tasks in out of container execution. entrypoint_settings (Optional[EntrypointSettings]): Information about the command, path and version of the entrypoint program. fast_serialization_settings (Optional[FastSerializationSettings]): If the code is being serialized so that it can be fast registered (and thus omit building a Docker image) this object contains additional parameters for serialization. source_root (Optional[str]): The root directory of the source code.

def SerializationSettings(
    image_config: ImageConfig,
    project: typing.Optional[str],
    domain: typing.Optional[str],
    version: typing.Optional[str],
    env: Optional[Dict[str, str]],
    git_repo: Optional[str],
    python_interpreter: str,
    flytekit_virtualenv_root: Optional[str],
    fast_serialization_settings: Optional[FastSerializationSettings],
    source_root: Optional[str],
):
Parameter Type
image_config ImageConfig
project typing.Optional[str]
domain typing.Optional[str]
version typing.Optional[str]
env Optional[Dict[str, str]]
git_repo Optional[str]
python_interpreter str
flytekit_virtualenv_root Optional[str]
fast_serialization_settings Optional[FastSerializationSettings]
source_root Optional[str]

Methods

Method Description
default_entrypoint_settings() Assumes the entrypoint is installed in a virtual-environment where the interpreter is
for_image() None
from_dict() None
from_json() None
from_transport() None
new_builder() Creates a ``SerializationSettings
schema() None
should_fast_serialize() Whether or not the serialization settings specify that entities should be serialized for fast registration
to_dict() None
to_json() None
venv_root_from_interpreter() Computes the path of the virtual environment root, based on the passed in python interpreter path
with_serialized_context() Use this method to create a new SerializationSettings that has an environment variable set with the SerializedContext

default_entrypoint_settings()

def default_entrypoint_settings(
    interpreter_path: str,
):

Assumes the entrypoint is installed in a virtual-environment where the interpreter is

Parameter Type
interpreter_path str

for_image()

def for_image(
    image: str,
    version: str,
    project: str,
    domain: str,
    python_interpreter_path: str,
):
Parameter Type
image str
version str
project str
domain str
python_interpreter_path str

from_dict()

def from_dict(
    kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
    infer_missing,
):
Parameter Type
kvs typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing

from_json()

def from_json(
    s: typing.Union[str, bytes, bytearray],
    parse_float,
    parse_int,
    parse_constant,
    infer_missing,
    kw,
):
Parameter Type
s typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw

from_transport()

def from_transport(
    s: str,
):
Parameter Type
s str

new_builder()

def new_builder()

Creates a SerializationSettings.Builder that copies the existing serialization settings parameters and allows for customization.

schema()

def schema(
    infer_missing: bool,
    only,
    exclude,
    many: bool,
    context,
    load_only,
    dump_only,
    partial: bool,
    unknown,
):
Parameter Type
infer_missing bool
only
exclude
many bool
context
load_only
dump_only
partial bool
unknown

should_fast_serialize()

def should_fast_serialize()

Whether or not the serialization settings specify that entities should be serialized for fast registration.

to_dict()

def to_dict(
    encode_json,
):
Parameter Type
encode_json

to_json()

def to_json(
    skipkeys: bool,
    ensure_ascii: bool,
    check_circular: bool,
    allow_nan: bool,
    indent: typing.Union[int, str, NoneType],
    separators: typing.Tuple[str, str],
    default: typing.Callable,
    sort_keys: bool,
    kw,
):
Parameter Type
skipkeys bool
ensure_ascii bool
check_circular bool
allow_nan bool
indent typing.Union[int, str, NoneType]
separators typing.Tuple[str, str]
default typing.Callable
sort_keys bool
kw

venv_root_from_interpreter()

def venv_root_from_interpreter(
    interpreter_path: str,
):

Computes the path of the virtual environment root, based on the passed in python interpreter path for example /opt/venv/bin/python3 -> /opt/venv

Parameter Type
interpreter_path str

with_serialized_context()

def with_serialized_context()

Use this method to create a new SerializationSettings that has an environment variable set with the SerializedContext This is useful in transporting SerializedContext to serialized and registered tasks. The setting will be available in the env field with the key SERIALIZED_CONTEXT_ENV_VAR :return: A newly constructed SerializationSettings, or self, if it already has the serializationSettings

Properties

Property Type Description
entrypoint_settings
serialized_context

flytekit.core.python_function_task.Task

The base of all Tasks in flytekit. This task is closest to the FlyteIDL TaskTemplate and captures information in FlyteIDL specification and does not have python native interfaces associated. Refer to the derived classes for examples of how to extend this class.

def Task(
    task_type: str,
    name: str,
    interface: flytekit.models.interface.TypedInterface,
    metadata: typing.Optional[flytekit.core.base_task.TaskMetadata],
    task_type_version,
    security_ctx: typing.Optional[flytekit.models.security.SecurityContext],
    docs: typing.Optional[flytekit.models.documentation.Documentation],
    kwargs,
):
Parameter Type
task_type str
name str
interface flytekit.models.interface.TypedInterface
metadata typing.Optional[flytekit.core.base_task.TaskMetadata]
task_type_version
security_ctx typing.Optional[flytekit.models.security.SecurityContext]
docs typing.Optional[flytekit.models.documentation.Documentation]
kwargs **kwargs

Methods

Method Description
compile() None
dispatch_execute() This method translates Flyte’s Type system based input values and invokes the actual call to the executor
execute() This method will be invoked to execute the task
get_config() Returns the task config as a serializable dictionary
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte
get_input_types() Returns python native types for inputs
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte
get_type_for_input_var() Returns the python native type for the given input variable
get_type_for_output_var() Returns the python native type for the given output variable
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute
local_execution_mode() None
pre_execute() This is the method that will be invoked directly before executing the task method and before all the inputs
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
):
Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

dispatch_execute()

def dispatch_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

execute()

def execute(
    kwargs,
):

This method will be invoked to execute the task.

Parameter Type
kwargs **kwargs

get_config()

def get_config(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_container()

def get_container(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
):

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_input_types()

def get_input_types()

Returns python native types for inputs. In case this is not a python native task (base class) and hence returns a None. we could deduce the type from literal types, but that is not a required exercise

TODO we could use literal type to determine this

get_k8s_pod()

def get_k8s_pod(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
):

Returns the python native type for the given input variable

TODO we could use literal type to determine this

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
):

Returns the python native type for the given output variable

TODO we could use literal type to determine this

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
):

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

pre_execute()

def pre_execute(
    user_params: flytekit.core.context_manager.ExecutionParameters,
):

This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called

This should return either the same context of the mutated context

Parameter Type
user_params flytekit.core.context_manager.ExecutionParameters

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

Properties

Property Type Description
docs
interface
metadata
name
python_interface
security_context
task_type
task_type_version

flytekit.core.python_function_task.TaskMetadata

Metadata for a Task. Things like retries and whether or not caching is turned on, and cache version are specified here.

See the :std:ref:IDL <idl:protos/docs/core/core:taskmetadata> for the protobuf definition.

Attributes: cache (bool): Indicates if caching should be enabled. See :std:ref:Caching <cookbook:caching>. cache_serialize (bool): Indicates if identical (i.e. same inputs) instances of this task should be executed in serial when caching is enabled. See :std:ref:Caching <cookbook:caching>. cache_version (str): Version to be used for the cached value. cache_ignore_input_vars (Tuple[str, …]): Input variables that should not be included when calculating hash for cache. interruptible (Optional[bool]): Indicates that this task can be interrupted and/or scheduled on nodes with lower QoS guarantees that can include pre-emption. deprecated (str): Can be used to provide a warning message for a deprecated task. An absence or empty string indicates that the task is active and not deprecated. retries (int): for retries=n; n > 0, on failures of this task, the task will be retried at-least n number of times. timeout (Optional[Union[datetime.timedelta, int]]): The maximum duration for which one execution of this task should run. The execution will be terminated if the runtime exceeds this timeout. pod_template_name (Optional[str]): The name of an existing PodTemplate resource in the cluster which will be used for this task. generates_deck (bool): Indicates whether the task will generate a Deck URI. is_eager (bool): Indicates whether the task should be treated as eager.

def TaskMetadata(
    cache: bool,
    cache_serialize: bool,
    cache_version: str,
    cache_ignore_input_vars: typing.Tuple[str, ...],
    interruptible: typing.Optional[bool],
    deprecated: str,
    retries: int,
    timeout: typing.Union[datetime.timedelta, int, NoneType],
    pod_template_name: typing.Optional[str],
    generates_deck: bool,
    is_eager: bool,
):
Parameter Type
cache bool
cache_serialize bool
cache_version str
cache_ignore_input_vars typing.Tuple[str, ...]
interruptible typing.Optional[bool]
deprecated str
retries int
timeout typing.Union[datetime.timedelta, int, NoneType]
pod_template_name typing.Optional[str]
generates_deck bool
is_eager bool

Methods

Method Description
to_taskmetadata_model() Converts to _task_model

to_taskmetadata_model()

def to_taskmetadata_model()

Converts to _task_model.TaskMetadata

Properties

Property Type Description
retry_strategy

flytekit.core.python_function_task.TaskResolverMixin

Flytekit tasks interact with the Flyte platform very, very broadly in two steps. They need to be uploaded to Admin, and then they are run by the user upon request (either as a single task execution or as part of a workflow). In any case, at execution time, for most tasks (that is those that generate a container target) the container image containing the task needs to be spun up again at which point the container needs to know which task it’s supposed to run and how to rehydrate the task object.

For example, the serialization of a simple task ::

in repo_root/workflows/example.py

@task def t1(…) -> …: …

might result in a container with arguments like ::

pyflyte-execute –inputs s3://path/inputs.pb –output-prefix s3://outputs/location –raw-output-data-prefix /tmp/data –resolver flytekit.core.python_auto_container.default_task_resolver – task-module repo_root.workflows.example task-name t1

At serialization time, the container created for the task will start out automatically with the pyflyte-execute bit, along with the requisite input/output args and the offloaded data prefix. Appended to that will be two things,

#. the location of the task’s task resolver, followed by two dashes, followed by #. the arguments provided by calling the loader_args function below.

The default_task_resolver declared below knows that

  • When loader_args is called on a task, to look up the module the task is in, and the name of the task (the key of the task in the module, either the function name, or the variable it was assigned to).
  • When load_task is called, it interprets the first part of the command as the module to call importlib.import_module on, and then looks for a key t1.

This is just the default behavior. Users should feel free to implement their own resolvers.

Methods

Method Description
get_all_tasks() Future proof method
load_task() Given the set of identifier keys, should return one Python Task or raise an error if not found
loader_args() Return a list of strings that can help identify the parameter Task
name() None
task_name() Overridable function that can optionally return a custom name for a given task

get_all_tasks()

def get_all_tasks()

Future proof method. Just making it easy to access all tasks (Not required today as we auto register them)

load_task()

def load_task(
    loader_args: typing.List[str],
):

Given the set of identifier keys, should return one Python Task or raise an error if not found

Parameter Type
loader_args typing.List[str]

loader_args()

def loader_args(
    settings: flytekit.configuration.SerializationSettings,
    t: flytekit.core.base_task.Task,
):

Return a list of strings that can help identify the parameter Task

Parameter Type
settings flytekit.configuration.SerializationSettings
t flytekit.core.base_task.Task

name()

def name()

task_name()

def task_name(
    t: flytekit.core.base_task.Task,
):

Overridable function that can optionally return a custom name for a given task

Parameter Type
t flytekit.core.base_task.Task

Properties

Property Type Description
location

flytekit.core.python_function_task.TypeVar

Type variable.

The preferred way to construct a type variable is via the dedicated syntax for generic functions, classes, and type aliases::

class Sequence[T]: # T is a TypeVar …

This syntax can also be used to create bound and constrained type variables::

S is a TypeVar bound to str

class StrSequence[S: str]: …

A is a TypeVar constrained to str or bytes

class StrOrBytesSequence[A: (str, bytes)]: …

However, if desired, reusable type variables can also be constructed manually, like so::

T = TypeVar(‘T’) # Can be anything S = TypeVar(‘S’, bound=str) # Can be any subtype of str A = TypeVar(‘A’, str, bytes) # Must be exactly str or bytes

Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function and type alias definitions.

The variance of type variables is inferred by type checkers when they are created through the type parameter syntax and when infer_variance=True is passed. Manually created type variables may be explicitly marked covariant or contravariant by passing covariant=True or contravariant=True. By default, manually created type variables are invariant. See PEP 484 and PEP 695 for more details.

flytekit.core.python_function_task.ValueIn

def ValueIn(
    key,
    values,
):
Parameter Type
key
values

Methods

Method Description
from_flyte_idl() None
from_python_std()
serialize_to_string() None
short_string()
to_flyte_idl() For supporting the auto-generated REST API, filters must be dumped to a string for representation as GET params
verbose_string()

from_flyte_idl()

def from_flyte_idl()

from_python_std()

def from_python_std(
    string,
):
Parameter Type
string

serialize_to_string()

def serialize_to_string()

short_string()

def short_string()

to_flyte_idl()

def to_flyte_idl()

For supporting the auto-generated REST API, filters must be dumped to a string for representation as GET params.

verbose_string()

def verbose_string()

Properties

Property Type Description
is_empty

flytekit.core.python_function_task.VoidPromise

This object is returned for tasks that do not return any outputs (declared interface is empty) VoidPromise cannot be interacted with and does not allow comparisons or any operations

def VoidPromise(
    task_name: str,
    ref: Optional[NodeOutput],
):
Parameter Type
task_name str
ref Optional[NodeOutput]

Methods

Method Description
runs_before() This is a placeholder and should do nothing
with_overrides() None

runs_before()

def runs_before(
    args,
    kwargs,
):

This is a placeholder and should do nothing. It is only here to enable local execution of workflows where a task returns nothing.

Parameter Type
args *args
kwargs **kwargs

with_overrides()

def with_overrides(
    args,
    kwargs,
):
Parameter Type
args *args
kwargs **kwargs

Properties

Property Type Description
ref
task_name

flytekit.core.python_function_task.WorkflowBase

def WorkflowBase(
    name: str,
    workflow_metadata: WorkflowMetadata,
    workflow_metadata_defaults: WorkflowMetadataDefaults,
    python_interface: Interface,
    on_failure: Optional[Union[WorkflowBase, Task]],
    docs: Optional[Documentation],
    default_options: Optional[Options],
    kwargs,
):
Parameter Type
name str
workflow_metadata WorkflowMetadata
workflow_metadata_defaults WorkflowMetadataDefaults
python_interface Interface
on_failure Optional[Union[WorkflowBase, Task]]
docs Optional[Documentation]
default_options Optional[Options]
kwargs **kwargs

Methods

Method Description
compile() None
construct_node_metadata() None
execute() None
local_execute() None
local_execution_mode() None

compile()

def compile(
    kwargs,
):
Parameter Type
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

execute()

def execute(
    kwargs,
):
Parameter Type
kwargs **kwargs

local_execute()

def local_execute(
    ctx: FlyteContext,
    kwargs,
):
Parameter Type
ctx FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

Properties

Property Type Description
default_options
docs
failure_node
interface
name
nodes
on_failure
output_bindings
python_interface
short_name
workflow_metadata
workflow_metadata_defaults

flytekit.core.python_function_task.WorkflowFailurePolicy

Defines the behavior for a workflow execution in the case of an observed node execution failure. By default, a workflow execution will immediately enter a failed state if a component node fails.

flytekit.core.python_function_task.WorkflowMetadata

def WorkflowMetadata(
    on_failure: WorkflowFailurePolicy,
):
Parameter Type
on_failure WorkflowFailurePolicy

Methods

Method Description
to_flyte_model() None

to_flyte_model()

def to_flyte_model()

flytekit.core.python_function_task.WorkflowMetadataDefaults

This class is similarly named to the one above. Please see the IDL for more information but essentially, this WorkflowMetadataDefaults class represents the defaults that are handed down to a workflow’s tasks, whereas WorkflowMetadata represents metadata about the workflow itself.

def WorkflowMetadataDefaults(
    interruptible: bool,
):
Parameter Type
interruptible bool

Methods

Method Description
to_flyte_model() None

to_flyte_model()

def to_flyte_model()

flytekit.core.python_function_task.suppress

Context manager to suppress specified exceptions

After the exception is suppressed, execution proceeds with the next statement following the with statement.

with suppress(FileNotFoundError): os.remove(somefile)

Execution still resumes here if the file was already removed

def suppress(
    exceptions,
):
Parameter Type
exceptions