1.15.4.dev2+g3e3ce2426

flytekit.core.python_customized_container_task

Directory

Classes

Class Description
Any Special type indicating an unconstrained type.
ExecutableTemplateShimTask The canonical @task decorated Python function task is pretty simple to reason about.
FlyteContext This is an internal-facing context object, that most users will not have to deal with.
Image Image is a structured wrapper for task container images used in object serialization.
ImageConfig We recommend you to use ImageConfig.
ImageSpec This class is used to specify the docker image that will be used to run the task.
PythonCustomizedContainerTask Please take a look at the comments for :py:class`flytekit.
PythonTask Base Class for all Tasks with a Python native Interface.
ResourceSpec None.
Resources This class is used to specify both resource requests and resource limits.
Secret See :std:ref:cookbook:secrets for usage examples.
SecurityContext This is a higher level wrapper object that for the most part users shouldn’t have to worry about.
SerializationSettings These settings are provided while serializing a workflow and task, before registration.
ShimTaskExecutor Please see the notes for the metaclass above first.
Task The base of all Tasks in flytekit.
TaskResolverMixin Flytekit tasks interact with the Flyte platform very, very broadly in two steps.
TaskTemplateResolver This is a special resolver that resolves the task above at execution time, using only the TaskTemplate,.
TrackedInstance Please see the notes for the metaclass above first.
TypeVar Type variable.

flytekit.core.python_customized_container_task.Any

Special type indicating an unconstrained type.

  • Any is compatible with every type.
  • Any assumed to have all methods.
  • All values assumed to be instances of Any.

Note that all the above statements are true from the point of view of static type checkers. At runtime, Any should not be used with instance checks.

flytekit.core.python_customized_container_task.ExecutableTemplateShimTask

The canonical @task decorated Python function task is pretty simple to reason about. At execution time (either locally or on a Flyte cluster), the function runs.

This class, along with the ShimTaskExecutor class below, represents another execution pattern. This pattern, has two components:

  • The TaskTemplate, or something like it like a FlyteTask.
  • An executor, which can use information from the task template (including the custom field)

Basically at execution time (both locally and on a Flyte cluster), the task template is given to the executor, which is responsible for computing and returning the results.

.. note::

The interface at execution time will have to derived from the Flyte IDL interface, which means it may be lossy. This is because when a task is serialized from Python into the TaskTemplate some information is lost because Flyte IDL can’t keep track of every single Python type (or Java type if writing in the Java flytekit).

This class also implements the dispatch_execute and execute functions to make it look like a PythonTask that the entrypoint.py can execute, even though this class doesn’t inherit from PythonTask.

def ExecutableTemplateShimTask(
    tt: _task_model.TaskTemplate,
    executor_type: Type[ShimTaskExecutor],
    args,
    kwargs,
):
Parameter Type
tt _task_model.TaskTemplate
executor_type Type[ShimTaskExecutor]
args *args
kwargs **kwargs

Methods

Method Description
dispatch_execute() This function is largely similar to the base PythonTask, with the exception that we have to infer the Python
execute() Rather than running here, send everything to the executor
post_execute() This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask
pre_execute() This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask

dispatch_execute()

def dispatch_execute(
    ctx: FlyteContext,
    input_literal_map: _literal_models.LiteralMap,
):

This function is largely similar to the base PythonTask, with the exception that we have to infer the Python interface before executing. Also, we refer to self.task_template rather than just self similar to task classes that derive from the base PythonTask.

Parameter Type
ctx FlyteContext
input_literal_map _literal_models.LiteralMap

execute()

def execute(
    kwargs,
):

Rather than running here, send everything to the executor.

Parameter Type
kwargs **kwargs

post_execute()

def post_execute(
    _: Optional[ExecutionParameters],
    rval: Any,
):

This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.

Parameter Type
_ Optional[ExecutionParameters]
rval Any

pre_execute()

def pre_execute(
    user_params: Optional[ExecutionParameters],
):

This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.

Parameter Type
user_params Optional[ExecutionParameters]

Properties

Property Type Description
executor
executor_type
name
task_template

flytekit.core.python_customized_container_task.FlyteContext

This is an internal-facing context object, that most users will not have to deal with. It’s essentially a globally available grab bag of settings and objects that allows flytekit to do things like convert complex types, run and compile workflows, serialize Flyte entities, etc.

Even though this object as a current_context function on it, it should not be called directly. Please use the :py:class:flytekit.FlyteContextManager object instead.

Please do not confuse this object with the :py:class:flytekit.ExecutionParameters object.

def FlyteContext(
    file_access: FileAccessProvider,
    level: int,
    flyte_client: Optional['friendly_client.SynchronousFlyteClient'],
    compilation_state: Optional[CompilationState],
    execution_state: Optional[ExecutionState],
    serialization_settings: Optional[SerializationSettings],
    in_a_condition: bool,
    origin_stackframe: Optional[traceback.FrameSummary],
    output_metadata_tracker: Optional[OutputMetadataTracker],
    worker_queue: Optional[Controller],
):
Parameter Type
file_access FileAccessProvider
level int
flyte_client Optional['friendly_client.SynchronousFlyteClient']
compilation_state Optional[CompilationState]
execution_state Optional[ExecutionState]
serialization_settings Optional[SerializationSettings]
in_a_condition bool
origin_stackframe Optional[traceback.FrameSummary]
output_metadata_tracker Optional[OutputMetadataTracker]
worker_queue Optional[Controller]

Methods

Method Description
current_context() This method exists only to maintain backwards compatibility
enter_conditional_section() None
get_deck() Returns the deck that was created as part of the last execution
get_origin_stackframe_repr() None
new_builder() None
new_compilation_state() Creates and returns a default compilation state
new_execution_state() Creates and returns a new default execution state
set_stackframe() None
with_client() None
with_compilation_state() None
with_execution_state() None
with_file_access() None
with_new_compilation_state() None
with_output_metadata_tracker() None
with_serialization_settings() None
with_worker_queue() None

current_context()

def current_context()

This method exists only to maintain backwards compatibility. Please use FlyteContextManager.current_context() instead.

Users of flytekit should be wary not to confuse the object returned from this function with :py:func:flytekit.current_context

enter_conditional_section()

def enter_conditional_section()

get_deck()

def get_deck()

Returns the deck that was created as part of the last execution.

The return value depends on the execution environment. In a notebook, the return value is compatible with IPython.display and should be rendered in the notebook.

.. code-block:: python

with flytekit.new_context() as ctx: my_task(…) ctx.get_deck()

OR if you wish to explicitly display

.. code-block:: python

from IPython import display display(ctx.get_deck())

get_origin_stackframe_repr()

def get_origin_stackframe_repr()

new_builder()

def new_builder()

new_compilation_state()

def new_compilation_state(
    prefix: str,
):

Creates and returns a default compilation state. For most of the code this should be the entrypoint of compilation, otherwise the code should always uses - with_compilation_state

Parameter Type
prefix str

new_execution_state()

def new_execution_state(
    working_dir: Optional[os.PathLike],
):

Creates and returns a new default execution state. This should be used at the entrypoint of execution, in all other cases it is preferable to use with_execution_state

Parameter Type
working_dir Optional[os.PathLike]

set_stackframe()

def set_stackframe(
    s: traceback.FrameSummary,
):
Parameter Type
s traceback.FrameSummary

with_client()

def with_client(
    c: SynchronousFlyteClient,
):
Parameter Type
c SynchronousFlyteClient

with_compilation_state()

def with_compilation_state(
    c: CompilationState,
):
Parameter Type
c CompilationState

with_execution_state()

def with_execution_state(
    es: ExecutionState,
):
Parameter Type
es ExecutionState

with_file_access()

def with_file_access(
    fa: FileAccessProvider,
):
Parameter Type
fa FileAccessProvider

with_new_compilation_state()

def with_new_compilation_state()

with_output_metadata_tracker()

def with_output_metadata_tracker(
    t: OutputMetadataTracker,
):
Parameter Type
t OutputMetadataTracker

with_serialization_settings()

def with_serialization_settings(
    ss: SerializationSettings,
):
Parameter Type
ss SerializationSettings

with_worker_queue()

def with_worker_queue(
    wq: Controller,
):
Parameter Type
wq Controller

Properties

Property Type Description
user_space_params

flytekit.core.python_customized_container_task.Image

Image is a structured wrapper for task container images used in object serialization.

Attributes: name (str): A user-provided name to identify this image. fqn (str): Fully qualified image name. This consists of #. a registry location #. a username #. a repository name For example: hostname/username/reponame tag (str): Optional tag used to specify which version of an image to pull digest (str): Optional digest used to specify which version of an image to pull

def Image(
    name: str,
    fqn: str,
    tag: Optional[str],
    digest: Optional[str],
):
Parameter Type
name str
fqn str
tag Optional[str]
digest Optional[str]

Methods

Method Description
from_dict() None
from_json() None
look_up_image_info() Creates an Image object from an image identifier string or a path to an ImageSpec yaml file
schema() None
to_dict() None
to_json() None

from_dict()

def from_dict(
    kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
    infer_missing,
):
Parameter Type
kvs typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing

from_json()

def from_json(
    s: typing.Union[str, bytes, bytearray],
    parse_float,
    parse_int,
    parse_constant,
    infer_missing,
    kw,
):
Parameter Type
s typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw

look_up_image_info()

def look_up_image_info(
    name: str,
    image_identifier: str,
    allow_no_tag_or_digest: bool,
):

Creates an Image object from an image identifier string or a path to an ImageSpec yaml file.

This function is used when registering tasks/workflows with Admin. When using the canonical Python-based development cycle, the version that is used to register workflows and tasks with Admin should be the version of the image itself, which should ideally be something unique like the git revision SHA1 of the latest commit.

Parameter Type
name str
image_identifier str
allow_no_tag_or_digest bool

schema()

def schema(
    infer_missing: bool,
    only,
    exclude,
    many: bool,
    context,
    load_only,
    dump_only,
    partial: bool,
    unknown,
):
Parameter Type
infer_missing bool
only
exclude
many bool
context
load_only
dump_only
partial bool
unknown

to_dict()

def to_dict(
    encode_json,
):
Parameter Type
encode_json

to_json()

def to_json(
    skipkeys: bool,
    ensure_ascii: bool,
    check_circular: bool,
    allow_nan: bool,
    indent: typing.Union[int, str, NoneType],
    separators: typing.Tuple[str, str],
    default: typing.Callable,
    sort_keys: bool,
    kw,
):
Parameter Type
skipkeys bool
ensure_ascii bool
check_circular bool
allow_nan bool
indent typing.Union[int, str, NoneType]
separators typing.Tuple[str, str]
default typing.Callable
sort_keys bool
kw

Properties

Property Type Description
full
version

flytekit.core.python_customized_container_task.ImageConfig

We recommend you to use ImageConfig.auto(img_name=None) to create an ImageConfig. For example, ImageConfig.auto(img_name=““ghcr.io/flyteorg/flytecookbook:v1.0.0"”) will create an ImageConfig.

ImageConfig holds available images which can be used at registration time. A default image can be specified along with optional additional images. Each image in the config must have a unique name.

Attributes: default_image (Optional[Image]): The default image to be used as a container for task serialization. images (List[Image]): Optional, additional images which can be used in task container definitions.

def ImageConfig(
    default_image: Optional[Image],
    images: Optional[List[Image]],
):
Parameter Type
default_image Optional[Image]
images Optional[List[Image]]

Methods

Method Description
auto() Reads from config file or from img_name
auto_default_image() None
create_from() None
find_image() Return an image, by name, if it exists
from_dict() None
from_images() Allows you to programmatically create an ImageConfig
from_json() None
schema() None
to_dict() None
to_json() None
validate_image() Validates the image to match the standard format

auto()

def auto(
    config_file: typing.Union[str, ConfigFile, None],
    img_name: Optional[str],
):

Reads from config file or from img_name Note that this function does not take into account the flytekit default images (see the Dockerfiles at the base of this repo). To pick those up, see the auto_default_image function..

Parameter Type
config_file typing.Union[str, ConfigFile, None]
img_name Optional[str]

auto_default_image()

def auto_default_image()

create_from()

def create_from(
    default_image: Optional[Image],
    other_images: typing.Optional[typing.List[Image]],
):
Parameter Type
default_image Optional[Image]
other_images typing.Optional[typing.List[Image]]

find_image()

def find_image(
    name,
):

Return an image, by name, if it exists.

Parameter Type
name

from_dict()

def from_dict(
    kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
    infer_missing,
):
Parameter Type
kvs typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing

from_images()

def from_images(
    default_image: str,
    m: typing.Optional[typing.Dict[str, str]],
):

Allows you to programmatically create an ImageConfig. Usually only the default_image is required, unless your workflow uses multiple images

.. code:: python

ImageConfig.from_dict( “ghcr.io/flyteorg/flytecookbook:v1.0.0”, { “spark”: “ghcr.io/flyteorg/myspark:…”, “other”: “…”, } )

urn:

Parameter Type
default_image str
m typing.Optional[typing.Dict[str, str]]

from_json()

def from_json(
    s: typing.Union[str, bytes, bytearray],
    parse_float,
    parse_int,
    parse_constant,
    infer_missing,
    kw,
):
Parameter Type
s typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw

schema()

def schema(
    infer_missing: bool,
    only,
    exclude,
    many: bool,
    context,
    load_only,
    dump_only,
    partial: bool,
    unknown,
):
Parameter Type
infer_missing bool
only
exclude
many bool
context
load_only
dump_only
partial bool
unknown

to_dict()

def to_dict(
    encode_json,
):
Parameter Type
encode_json

to_json()

def to_json(
    skipkeys: bool,
    ensure_ascii: bool,
    check_circular: bool,
    allow_nan: bool,
    indent: typing.Union[int, str, NoneType],
    separators: typing.Tuple[str, str],
    default: typing.Callable,
    sort_keys: bool,
    kw,
):
Parameter Type
skipkeys bool
ensure_ascii bool
check_circular bool
allow_nan bool
indent typing.Union[int, str, NoneType]
separators typing.Tuple[str, str]
default typing.Callable
sort_keys bool
kw

validate_image()

def validate_image(
    _: typing.Any,
    param: str,
    values: tuple,
):

Validates the image to match the standard format. Also validates that only one default image is provided. a default image, is one that is specified as default=<image_uri> or just <image_uri>. All other images should be provided with a name, in the format name=<image_uri> This method can be used with the CLI

Parameter Type
_ typing.Any
param str
values tuple

flytekit.core.python_customized_container_task.ImageSpec

This class is used to specify the docker image that will be used to run the task.

def ImageSpec(
    name: str,
    python_version: str,
    builder: typing.Optional[str],
    source_root: typing.Optional[str],
    env: typing.Optional[typing.Dict[str, str]],
    registry: typing.Optional[str],
    packages: typing.Optional[typing.List[str]],
    conda_packages: typing.Optional[typing.List[str]],
    conda_channels: typing.Optional[typing.List[str]],
    requirements: typing.Optional[str],
    apt_packages: typing.Optional[typing.List[str]],
    cuda: typing.Optional[str],
    cudnn: typing.Optional[str],
    base_image: typing.Union[str, ForwardRef('ImageSpec'), NoneType],
    platform: str,
    pip_index: typing.Optional[str],
    pip_extra_index_url: typing.Optional[typing.List[str]],
    pip_secret_mounts: typing.Optional[typing.List[typing.Tuple[str, str]]],
    pip_extra_args: typing.Optional[str],
    registry_config: typing.Optional[str],
    entrypoint: typing.Optional[typing.List[str]],
    commands: typing.Optional[typing.List[str]],
    tag_format: typing.Optional[str],
    source_copy_mode: typing.Optional[flytekit.constants.CopyFileDetection],
    copy: typing.Optional[typing.List[str]],
    python_exec: typing.Optional[str],
):
Parameter Type
name str
python_version str
builder typing.Optional[str]
source_root typing.Optional[str]
env typing.Optional[typing.Dict[str, str]]
registry typing.Optional[str]
packages typing.Optional[typing.List[str]]
conda_packages typing.Optional[typing.List[str]]
conda_channels typing.Optional[typing.List[str]]
requirements typing.Optional[str]
apt_packages typing.Optional[typing.List[str]]
cuda typing.Optional[str]
cudnn typing.Optional[str]
base_image typing.Union[str, ForwardRef('ImageSpec'), NoneType]
platform str
pip_index typing.Optional[str]
pip_extra_index_url typing.Optional[typing.List[str]]
pip_secret_mounts typing.Optional[typing.List[typing.Tuple[str, str]]]
pip_extra_args typing.Optional[str]
registry_config typing.Optional[str]
entrypoint typing.Optional[typing.List[str]]
commands typing.Optional[typing.List[str]]
tag_format typing.Optional[str]
source_copy_mode typing.Optional[flytekit.constants.CopyFileDetection]
copy typing.Optional[typing.List[str]]
python_exec typing.Optional[str]

Methods

Method Description
exist() Check if the image exists in the registry
force_push() Builder that returns a new image spec with force push enabled
from_env() Create ImageSpec with the environment’s Python version and packages pinned to the ones in the environment
image_name() Full image name with tag
is_container() Check if the current container image in the pod is built from current image spec
with_apt_packages() Builder that returns a new image spec with an additional list of apt packages that will be executed during the building process
with_commands() Builder that returns a new image spec with an additional list of commands that will be executed during the building process
with_copy() Builder that returns a new image spec with the source files copied to the destination directory
with_packages() Builder that returns a new image speck with additional python packages that will be installed during the building process

exist()

def exist()

Check if the image exists in the registry. Return True if the image exists in the registry, False otherwise. Return None if failed to check if the image exists due to the permission issue or other reasons.

force_push()

def force_push()

Builder that returns a new image spec with force push enabled.

from_env()

def from_env(
    pinned_packages: typing.Optional[typing.List[str]],
    kwargs,
):

Create ImageSpec with the environment’s Python version and packages pinned to the ones in the environment.

Parameter Type
pinned_packages typing.Optional[typing.List[str]]
kwargs **kwargs

image_name()

def image_name()

Full image name with tag.

is_container()

def is_container()

Check if the current container image in the pod is built from current image spec. :return: True if the current container image in the pod is built from current image spec, False otherwise.

with_apt_packages()

def with_apt_packages(
    apt_packages: typing.Union[str, typing.List[str]],
):

Builder that returns a new image spec with an additional list of apt packages that will be executed during the building process.

Parameter Type
apt_packages typing.Union[str, typing.List[str]]

with_commands()

def with_commands(
    commands: typing.Union[str, typing.List[str]],
):

Builder that returns a new image spec with an additional list of commands that will be executed during the building process.

Parameter Type
commands typing.Union[str, typing.List[str]]

with_copy()

def with_copy(
    src: typing.Union[str, typing.List[str]],
):

Builder that returns a new image spec with the source files copied to the destination directory.

Parameter Type
src typing.Union[str, typing.List[str]]

with_packages()

def with_packages(
    packages: typing.Union[str, typing.List[str]],
):

Builder that returns a new image speck with additional python packages that will be installed during the building process.

Parameter Type
packages typing.Union[str, typing.List[str]]

Properties

Property Type Description
tag

flytekit.core.python_customized_container_task.PythonCustomizedContainerTask

Please take a look at the comments for :py:classflytekit.extend.ExecutableTemplateShimTask as well. This class should be subclassed and a custom Executor provided as a default to this parent class constructor when building a new external-container flytekit-only plugin.

This class provides authors of new task types the basic scaffolding to create task-template based tasks. In order to write such a task, authors need to

  • subclass the ShimTaskExecutor class and override the execute_from_model function. This function is where all the business logic should go. Keep in mind though that you, the plugin author, will not have access to anything that’s not serialized within the TaskTemplate which is why you’ll also need to
  • subclass this class, and override the get_custom function to include all the information the executor will need to run.
  • Also pass the executor you created as the executor_type argument of this class’s constructor.

Keep in mind that the total size of the TaskTemplate still needs to be small, since these will be accessed frequently by the Flyte engine.

def PythonCustomizedContainerTask(
    name: str,
    task_config: TC,
    container_image: str,
    executor_type: Type[ShimTaskExecutor],
    task_resolver: Optional[TaskTemplateResolver],
    task_type,
    requests: Optional[Resources],
    limits: Optional[Resources],
    environment: Optional[Dict[str, str]],
    secret_requests: Optional[List[Secret]],
    kwargs,
):
Parameter Type
name str
task_config TC
container_image str
executor_type Type[ShimTaskExecutor]
task_resolver Optional[TaskTemplateResolver]
task_type
requests Optional[Resources]
limits Optional[Resources]
environment Optional[Dict[str, str]]
secret_requests Optional[List[Secret]]
kwargs **kwargs

Methods

Method Description
compile() Generates a node that encapsulates this task in a workflow definition
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition
dispatch_execute() This function is largely similar to the base PythonTask, with the exception that we have to infer the Python
execute() Rather than running here, send everything to the executor
find_lhs() None
get_command() None
get_config() Returns the task config as a serializable dictionary
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte
get_image() None
get_input_types() Returns the names and python types as a dictionary for the inputs of this task
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte
get_type_for_input_var() Returns the python type for an input variable by name
get_type_for_output_var() Returns the python type for the specified output variable by name
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute
local_execution_mode() None
post_execute() This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask
pre_execute() This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution
serialize_to_model() None

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
):

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: FlyteContext,
    input_literal_map: _literal_models.LiteralMap,
):

This function is largely similar to the base PythonTask, with the exception that we have to infer the Python interface before executing. Also, we refer to self.task_template rather than just self similar to task classes that derive from the base PythonTask.

Parameter Type
ctx FlyteContext
input_literal_map _literal_models.LiteralMap

execute()

def execute(
    kwargs,
):

Rather than running here, send everything to the executor.

Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_command()

def get_command(
    settings: SerializationSettings,
):
Parameter Type
settings SerializationSettings

get_config()

def get_config(
    settings: SerializationSettings,
):

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings SerializationSettings

get_container()

def get_container(
    settings: SerializationSettings,
):

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_custom()

def get_custom(
    settings: SerializationSettings,
):

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_image()

def get_image(
    settings: SerializationSettings,
):
Parameter Type
settings SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
):

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
):

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
):

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    _: Optional[ExecutionParameters],
    rval: Any,
):

This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.

Parameter Type
_ Optional[ExecutionParameters]
rval Any

pre_execute()

def pre_execute(
    user_params: Optional[ExecutionParameters],
):

This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.

Parameter Type
user_params Optional[ExecutionParameters]

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

serialize_to_model()

def serialize_to_model(
    settings: SerializationSettings,
):
Parameter Type
settings SerializationSettings

Properties

Property Type Description
container_image
deck_fields
disable_deck
docs
enable_deck
environment
executor
executor_type
instantiated_in
interface
lhs
location
metadata
name
python_interface
resources
security_context
task_config
task_resolver
task_template
task_type
task_type_version

flytekit.core.python_customized_container_task.PythonTask

Base Class for all Tasks with a Python native Interface. This should be directly used for task types, that do not have a python function to be executed. Otherwise refer to :py:class:flytekit.PythonFunctionTask.

def PythonTask(
    task_type: str,
    name: str,
    task_config: typing.Optional[~T],
    interface: typing.Optional[flytekit.core.interface.Interface],
    environment: typing.Optional[typing.Dict[str, str]],
    disable_deck: typing.Optional[bool],
    enable_deck: typing.Optional[bool],
    deck_fields: typing.Optional[typing.Tuple[flytekit.deck.deck.DeckField, ...]],
    kwargs,
):
Parameter Type
task_type str
name str
task_config typing.Optional[~T]
interface typing.Optional[flytekit.core.interface.Interface]
environment typing.Optional[typing.Dict[str, str]]
disable_deck typing.Optional[bool]
enable_deck typing.Optional[bool]
deck_fields typing.Optional[typing.Tuple[flytekit.deck.deck.DeckField, ...]]
kwargs **kwargs

Methods

Method Description
compile() Generates a node that encapsulates this task in a workflow definition
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition
dispatch_execute() This method translates Flyte’s Type system based input values and invokes the actual call to the executor
execute() This method will be invoked to execute the task
find_lhs() None
get_config() Returns the task config as a serializable dictionary
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte
get_input_types() Returns the names and python types as a dictionary for the inputs of this task
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte
get_type_for_input_var() Returns the python type for an input variable by name
get_type_for_output_var() Returns the python type for the specified output variable by name
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute
local_execution_mode() None
post_execute() Post execute is called after the execution has completed, with the user_params and can be used to clean-up,
pre_execute() This is the method that will be invoked directly before executing the task method and before all the inputs
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
):

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.

  • VoidPromise is returned in the case when the task itself declares no outputs.
  • Literal Map is returned when the task returns either one more outputs in the declaration. Individual outputs may be none
  • DynamicJobSpec is returned when a dynamic workflow is executed
Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

execute()

def execute(
    kwargs,
):

This method will be invoked to execute the task.

Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_config()

def get_config(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_container()

def get_container(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
):

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
):

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
):

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
):

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
    rval: typing.Any,
):

Post execute is called after the execution has completed, with the user_params and can be used to clean-up, or alter the outputs to match the intended tasks outputs. If not overridden, then this function is a No-op

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]
rval typing.Any

pre_execute()

def pre_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
):

This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called

This should return either the same context of the mutated context

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

Properties

Property Type Description
deck_fields
disable_deck
docs
enable_deck
environment
instantiated_in
interface
lhs
location
metadata
name
python_interface
security_context
task_config
task_type
task_type_version

flytekit.core.python_customized_container_task.ResourceSpec

def ResourceSpec(
    requests: flytekit.core.resources.Resources,
    limits: flytekit.core.resources.Resources,
):
Parameter Type
requests flytekit.core.resources.Resources
limits flytekit.core.resources.Resources

Methods

Method Description
from_dict() None
from_json() None
from_multiple_resource() Convert Resources that represent both a requests and limits into a ResourceSpec
to_dict() None
to_json() None

from_dict()

def from_dict(
    d,
    dialect,
):
Parameter Type
d
dialect

from_json()

def from_json(
    data: typing.Union[str, bytes, bytearray],
    decoder: collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]],
    from_dict_kwargs: typing.Any,
):
Parameter Type
data typing.Union[str, bytes, bytearray]
decoder collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]]
from_dict_kwargs typing.Any

from_multiple_resource()

def from_multiple_resource(
    resource: flytekit.core.resources.Resources,
):

Convert Resources that represent both a requests and limits into a ResourceSpec.

Parameter Type
resource flytekit.core.resources.Resources

to_dict()

def to_dict()

to_json()

def to_json(
    encoder: collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]],
    to_dict_kwargs: typing.Any,
):
Parameter Type
encoder collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]]
to_dict_kwargs typing.Any

flytekit.core.python_customized_container_task.Resources

This class is used to specify both resource requests and resource limits.

.. code-block:: python

Resources(cpu=“1”, mem=“2048”) # This is 1 CPU and 2 KB of memory Resources(cpu=“100m”, mem=“2Gi”) # This is 1/10th of a CPU and 2 gigabytes of memory Resources(cpu=0.5, mem=1024) # This is 500m CPU and 1 KB of memory

For Kubernetes-based tasks, pods use ephemeral local storage for scratch space, caching, and for logs.

This allocates 1Gi of such local storage.

Resources(ephemeral_storage=“1Gi”)

When used together with @task(resources=), you a specific the request and limits with one object. When the value is set to a tuple or list, the first value is the request and the second value is the limit. If the value is a single value, then both the requests and limit is set to that value. For example, the Resource(cpu=("1", "2"), mem=1024) will set the cpu request to 1, cpu limit to 2, mem limit and request to 1024.

.. note::

Persistent storage is not currently supported on the Flyte backend.

Please see the :std:ref:User Guide <cookbook:customizing task resources> for detailed examples. Also refer to the K8s conventions. <https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#resource-units-in-kubernetes>__

def Resources(
    cpu: typing.Union[str, int, float, list, tuple, NoneType],
    mem: typing.Union[str, int, list, tuple, NoneType],
    gpu: typing.Union[str, int, list, tuple, NoneType],
    ephemeral_storage: typing.Union[str, int, NoneType],
):
Parameter Type
cpu typing.Union[str, int, float, list, tuple, NoneType]
mem typing.Union[str, int, list, tuple, NoneType]
gpu typing.Union[str, int, list, tuple, NoneType]
ephemeral_storage typing.Union[str, int, NoneType]

Methods

Method Description
from_dict() None
from_json() None
to_dict() None
to_json() None

from_dict()

def from_dict(
    d,
    dialect,
):
Parameter Type
d
dialect

from_json()

def from_json(
    data: typing.Union[str, bytes, bytearray],
    decoder: collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]],
    from_dict_kwargs: typing.Any,
):
Parameter Type
data typing.Union[str, bytes, bytearray]
decoder collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]]
from_dict_kwargs typing.Any

to_dict()

def to_dict()

to_json()

def to_json(
    encoder: collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]],
    to_dict_kwargs: typing.Any,
):
Parameter Type
encoder collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]]
to_dict_kwargs typing.Any

flytekit.core.python_customized_container_task.Secret

See :std:ref:cookbook:secrets for usage examples.

def Secret(
    group: typing.Optional[str],
    key: typing.Optional[str],
    group_version: typing.Optional[str],
    mount_requirement: <enum 'MountType'>,
    env_var: typing.Optional[str],
):
Parameter Type
group typing.Optional[str]
key typing.Optional[str]
group_version typing.Optional[str]
mount_requirement <enum 'MountType'>
env_var typing.Optional[str]

Methods

Method Description
from_flyte_idl() None
serialize_to_string() None
short_string()
to_flyte_idl() None
verbose_string()

from_flyte_idl()

def from_flyte_idl(
    pb2_object: flyteidl.core.security_pb2.Secret,
):
Parameter Type
pb2_object flyteidl.core.security_pb2.Secret

serialize_to_string()

def serialize_to_string()

short_string()

def short_string()

to_flyte_idl()

def to_flyte_idl()

verbose_string()

def verbose_string()

Properties

Property Type Description
is_empty

flytekit.core.python_customized_container_task.SecurityContext

This is a higher level wrapper object that for the most part users shouldn’t have to worry about. You should be able to just use :py:class:flytekit.Secret instead.

def SecurityContext(
    run_as: typing.Optional[flytekit.models.security.Identity],
    secrets: typing.Optional[typing.List[flytekit.models.security.Secret]],
    tokens: typing.Optional[typing.List[flytekit.models.security.OAuth2TokenRequest]],
):
Parameter Type
run_as typing.Optional[flytekit.models.security.Identity]
secrets typing.Optional[typing.List[flytekit.models.security.Secret]]
tokens typing.Optional[typing.List[flytekit.models.security.OAuth2TokenRequest]]

Methods

Method Description
from_flyte_idl() None
serialize_to_string() None
short_string()
to_flyte_idl() None
verbose_string()

from_flyte_idl()

def from_flyte_idl(
    pb2_object: flyteidl.core.security_pb2.SecurityContext,
):
Parameter Type
pb2_object flyteidl.core.security_pb2.SecurityContext

serialize_to_string()

def serialize_to_string()

short_string()

def short_string()

to_flyte_idl()

def to_flyte_idl()

verbose_string()

def verbose_string()

Properties

Property Type Description
is_empty

flytekit.core.python_customized_container_task.SerializationSettings

These settings are provided while serializing a workflow and task, before registration. This is required to get runtime information at serialization time, as well as some defaults.

Attributes: project (str): The project (if any) with which to register entities under. domain (str): The domain (if any) with which to register entities under. version (str): The version (if any) with which to register entities under. image_config (ImageConfig): The image config used to define task container images. env (Optional[Dict[str, str]]): Environment variables injected into task container definitions. flytekit_virtualenv_root (Optional[str]): During out of container serialize the absolute path of the flytekit virtualenv at serialization time won’t match the in-container value at execution time. This optional value is used to provide the in-container virtualenv path python_interpreter (Optional[str]): The python executable to use. This is used for spark tasks in out of container execution. entrypoint_settings (Optional[EntrypointSettings]): Information about the command, path and version of the entrypoint program. fast_serialization_settings (Optional[FastSerializationSettings]): If the code is being serialized so that it can be fast registered (and thus omit building a Docker image) this object contains additional parameters for serialization. source_root (Optional[str]): The root directory of the source code.

def SerializationSettings(
    image_config: ImageConfig,
    project: typing.Optional[str],
    domain: typing.Optional[str],
    version: typing.Optional[str],
    env: Optional[Dict[str, str]],
    git_repo: Optional[str],
    python_interpreter: str,
    flytekit_virtualenv_root: Optional[str],
    fast_serialization_settings: Optional[FastSerializationSettings],
    source_root: Optional[str],
):
Parameter Type
image_config ImageConfig
project typing.Optional[str]
domain typing.Optional[str]
version typing.Optional[str]
env Optional[Dict[str, str]]
git_repo Optional[str]
python_interpreter str
flytekit_virtualenv_root Optional[str]
fast_serialization_settings Optional[FastSerializationSettings]
source_root Optional[str]

Methods

Method Description
default_entrypoint_settings() Assumes the entrypoint is installed in a virtual-environment where the interpreter is
for_image() None
from_dict() None
from_json() None
from_transport() None
new_builder() Creates a ``SerializationSettings
schema() None
should_fast_serialize() Whether or not the serialization settings specify that entities should be serialized for fast registration
to_dict() None
to_json() None
venv_root_from_interpreter() Computes the path of the virtual environment root, based on the passed in python interpreter path
with_serialized_context() Use this method to create a new SerializationSettings that has an environment variable set with the SerializedContext

default_entrypoint_settings()

def default_entrypoint_settings(
    interpreter_path: str,
):

Assumes the entrypoint is installed in a virtual-environment where the interpreter is

Parameter Type
interpreter_path str

for_image()

def for_image(
    image: str,
    version: str,
    project: str,
    domain: str,
    python_interpreter_path: str,
):
Parameter Type
image str
version str
project str
domain str
python_interpreter_path str

from_dict()

def from_dict(
    kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
    infer_missing,
):
Parameter Type
kvs typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing

from_json()

def from_json(
    s: typing.Union[str, bytes, bytearray],
    parse_float,
    parse_int,
    parse_constant,
    infer_missing,
    kw,
):
Parameter Type
s typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw

from_transport()

def from_transport(
    s: str,
):
Parameter Type
s str

new_builder()

def new_builder()

Creates a SerializationSettings.Builder that copies the existing serialization settings parameters and allows for customization.

schema()

def schema(
    infer_missing: bool,
    only,
    exclude,
    many: bool,
    context,
    load_only,
    dump_only,
    partial: bool,
    unknown,
):
Parameter Type
infer_missing bool
only
exclude
many bool
context
load_only
dump_only
partial bool
unknown

should_fast_serialize()

def should_fast_serialize()

Whether or not the serialization settings specify that entities should be serialized for fast registration.

to_dict()

def to_dict(
    encode_json,
):
Parameter Type
encode_json

to_json()

def to_json(
    skipkeys: bool,
    ensure_ascii: bool,
    check_circular: bool,
    allow_nan: bool,
    indent: typing.Union[int, str, NoneType],
    separators: typing.Tuple[str, str],
    default: typing.Callable,
    sort_keys: bool,
    kw,
):
Parameter Type
skipkeys bool
ensure_ascii bool
check_circular bool
allow_nan bool
indent typing.Union[int, str, NoneType]
separators typing.Tuple[str, str]
default typing.Callable
sort_keys bool
kw

venv_root_from_interpreter()

def venv_root_from_interpreter(
    interpreter_path: str,
):

Computes the path of the virtual environment root, based on the passed in python interpreter path for example /opt/venv/bin/python3 -> /opt/venv

Parameter Type
interpreter_path str

with_serialized_context()

def with_serialized_context()

Use this method to create a new SerializationSettings that has an environment variable set with the SerializedContext This is useful in transporting SerializedContext to serialized and registered tasks. The setting will be available in the env field with the key SERIALIZED_CONTEXT_ENV_VAR :return: A newly constructed SerializationSettings, or self, if it already has the serializationSettings

Properties

Property Type Description
entrypoint_settings
serialized_context

flytekit.core.python_customized_container_task.ShimTaskExecutor

Please see the notes for the metaclass above first.

This functionality has two use-cases currently,

  • Keep track of naming for non-function PythonAutoContainerTasks. That is, things like the :py:class:flytekit.extras.sqlite3.task.SQLite3Task task.
  • Task resolvers, because task resolvers are instances of :py:class:flytekit.core.python_auto_container.TaskResolverMixin classes, not the classes themselves, which means we need to look on the left hand side of them to see how to find them at task execution time.
def ShimTaskExecutor(
    args,
    kwargs,
):
Parameter Type
args *args
kwargs **kwargs

Methods

Method Description
execute_from_model() This function must be overridden and is where all the business logic for running a task should live
find_lhs() None

execute_from_model()

def execute_from_model(
    tt: _task_model.TaskTemplate,
    kwargs,
):

This function must be overridden and is where all the business logic for running a task should live. Keep in mind that you’re only working with the TaskTemplate. You won’t have access to any information in the task that wasn’t serialized into the template.

Parameter Type
tt _task_model.TaskTemplate
kwargs **kwargs

find_lhs()

def find_lhs()

Properties

Property Type Description
instantiated_in
lhs
location

flytekit.core.python_customized_container_task.Task

The base of all Tasks in flytekit. This task is closest to the FlyteIDL TaskTemplate and captures information in FlyteIDL specification and does not have python native interfaces associated. Refer to the derived classes for examples of how to extend this class.

def Task(
    task_type: str,
    name: str,
    interface: flytekit.models.interface.TypedInterface,
    metadata: typing.Optional[flytekit.core.base_task.TaskMetadata],
    task_type_version,
    security_ctx: typing.Optional[flytekit.models.security.SecurityContext],
    docs: typing.Optional[flytekit.models.documentation.Documentation],
    kwargs,
):
Parameter Type
task_type str
name str
interface flytekit.models.interface.TypedInterface
metadata typing.Optional[flytekit.core.base_task.TaskMetadata]
task_type_version
security_ctx typing.Optional[flytekit.models.security.SecurityContext]
docs typing.Optional[flytekit.models.documentation.Documentation]
kwargs **kwargs

Methods

Method Description
compile() None
dispatch_execute() This method translates Flyte’s Type system based input values and invokes the actual call to the executor
execute() This method will be invoked to execute the task
get_config() Returns the task config as a serializable dictionary
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte
get_input_types() Returns python native types for inputs
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte
get_type_for_input_var() Returns the python native type for the given input variable
get_type_for_output_var() Returns the python native type for the given output variable
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute
local_execution_mode() None
pre_execute() This is the method that will be invoked directly before executing the task method and before all the inputs
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
):
Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

dispatch_execute()

def dispatch_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

execute()

def execute(
    kwargs,
):

This method will be invoked to execute the task.

Parameter Type
kwargs **kwargs

get_config()

def get_config(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_container()

def get_container(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
):

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_input_types()

def get_input_types()

Returns python native types for inputs. In case this is not a python native task (base class) and hence returns a None. we could deduce the type from literal types, but that is not a required exercise

TODO we could use literal type to determine this

get_k8s_pod()

def get_k8s_pod(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
):

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
):

Returns the python native type for the given input variable

TODO we could use literal type to determine this

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
):

Returns the python native type for the given output variable

TODO we could use literal type to determine this

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
):

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

pre_execute()

def pre_execute(
    user_params: flytekit.core.context_manager.ExecutionParameters,
):

This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called

This should return either the same context of the mutated context

Parameter Type
user_params flytekit.core.context_manager.ExecutionParameters

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
):

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

Properties

Property Type Description
docs
interface
metadata
name
python_interface
security_context
task_type
task_type_version

flytekit.core.python_customized_container_task.TaskResolverMixin

Flytekit tasks interact with the Flyte platform very, very broadly in two steps. They need to be uploaded to Admin, and then they are run by the user upon request (either as a single task execution or as part of a workflow). In any case, at execution time, for most tasks (that is those that generate a container target) the container image containing the task needs to be spun up again at which point the container needs to know which task it’s supposed to run and how to rehydrate the task object.

For example, the serialization of a simple task ::

in repo_root/workflows/example.py

@task def t1(…) -> …: …

might result in a container with arguments like ::

pyflyte-execute –inputs s3://path/inputs.pb –output-prefix s3://outputs/location –raw-output-data-prefix /tmp/data –resolver flytekit.core.python_auto_container.default_task_resolver – task-module repo_root.workflows.example task-name t1

At serialization time, the container created for the task will start out automatically with the pyflyte-execute bit, along with the requisite input/output args and the offloaded data prefix. Appended to that will be two things,

#. the location of the task’s task resolver, followed by two dashes, followed by #. the arguments provided by calling the loader_args function below.

The default_task_resolver declared below knows that

  • When loader_args is called on a task, to look up the module the task is in, and the name of the task (the key of the task in the module, either the function name, or the variable it was assigned to).
  • When load_task is called, it interprets the first part of the command as the module to call importlib.import_module on, and then looks for a key t1.

This is just the default behavior. Users should feel free to implement their own resolvers.

Methods

Method Description
get_all_tasks() Future proof method
load_task() Given the set of identifier keys, should return one Python Task or raise an error if not found
loader_args() Return a list of strings that can help identify the parameter Task
name() None
task_name() Overridable function that can optionally return a custom name for a given task

get_all_tasks()

def get_all_tasks()

Future proof method. Just making it easy to access all tasks (Not required today as we auto register them)

load_task()

def load_task(
    loader_args: typing.List[str],
):

Given the set of identifier keys, should return one Python Task or raise an error if not found

Parameter Type
loader_args typing.List[str]

loader_args()

def loader_args(
    settings: flytekit.configuration.SerializationSettings,
    t: flytekit.core.base_task.Task,
):

Return a list of strings that can help identify the parameter Task

Parameter Type
settings flytekit.configuration.SerializationSettings
t flytekit.core.base_task.Task

name()

def name()

task_name()

def task_name(
    t: flytekit.core.base_task.Task,
):

Overridable function that can optionally return a custom name for a given task

Parameter Type
t flytekit.core.base_task.Task

Properties

Property Type Description
location

flytekit.core.python_customized_container_task.TaskTemplateResolver

This is a special resolver that resolves the task above at execution time, using only the TaskTemplate, meaning it should only be used for tasks that contain all pertinent information within the template itself.

This class differs from some TaskResolverMixin pattern a bit. Most of the other resolvers you’ll find,

  • restores the same task when load_task is called as the object that loader_args was called on. That is, even though at run time it’s in a container on a cluster and is obviously a different Python process, the Python object in memory should look the same.
  • offers a one-to-one mapping between the list of strings returned by the loader_args function, an the task, at least within the container.

This resolver differs in that,

  • when loading a task, the task that is a loaded is always an ExecutableTemplateShimTask, regardless of what kind of task it was originally. It will only ever have what’s available to it from the TaskTemplate. No information that wasn’t serialized into the template will be available.
  • all tasks will result in the same list of strings for a given subclass of the ShimTaskExecutor executor. The strings will be ["{{.taskTemplatePath}}", "path.to.your.executor"]

Also, get_all_tasks will always return an empty list, at least for now.

def TaskTemplateResolver()

Methods

Method Description
find_lhs() None
get_all_tasks() Future proof method
load_task() Given the set of identifier keys, should return one Python Task or raise an error if not found
loader_args() Return a list of strings that can help identify the parameter Task
name() None
task_name() Overridable function that can optionally return a custom name for a given task

find_lhs()

def find_lhs()

get_all_tasks()

def get_all_tasks()

Future proof method. Just making it easy to access all tasks (Not required today as we auto register them)

load_task()

def load_task(
    loader_args: List[str],
):

Given the set of identifier keys, should return one Python Task or raise an error if not found

Parameter Type
loader_args List[str]

loader_args()

def loader_args(
    settings: SerializationSettings,
    t: PythonCustomizedContainerTask,
):

Return a list of strings that can help identify the parameter Task

Parameter Type
settings SerializationSettings
t PythonCustomizedContainerTask

name()

def name()

task_name()

def task_name(
    t: flytekit.core.base_task.Task,
):

Overridable function that can optionally return a custom name for a given task

Parameter Type
t flytekit.core.base_task.Task

Properties

Property Type Description
instantiated_in
lhs
location

flytekit.core.python_customized_container_task.TrackedInstance

Please see the notes for the metaclass above first.

This functionality has two use-cases currently,

  • Keep track of naming for non-function PythonAutoContainerTasks. That is, things like the :py:class:flytekit.extras.sqlite3.task.SQLite3Task task.
  • Task resolvers, because task resolvers are instances of :py:class:flytekit.core.python_auto_container.TaskResolverMixin classes, not the classes themselves, which means we need to look on the left hand side of them to see how to find them at task execution time.
def TrackedInstance(
    args,
    kwargs,
):
Parameter Type
args *args
kwargs **kwargs

Methods

Method Description
find_lhs() None

find_lhs()

def find_lhs()

Properties

Property Type Description
instantiated_in
lhs
location

flytekit.core.python_customized_container_task.TypeVar

Type variable.

The preferred way to construct a type variable is via the dedicated syntax for generic functions, classes, and type aliases::

class Sequence[T]: # T is a TypeVar …

This syntax can also be used to create bound and constrained type variables::

S is a TypeVar bound to str

class StrSequence[S: str]: …

A is a TypeVar constrained to str or bytes

class StrOrBytesSequence[A: (str, bytes)]: …

However, if desired, reusable type variables can also be constructed manually, like so::

T = TypeVar(‘T’) # Can be anything S = TypeVar(‘S’, bound=str) # Can be any subtype of str A = TypeVar(‘A’, str, bytes) # Must be exactly str or bytes

Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function and type alias definitions.

The variance of type variables is inferred by type checkers when they are created through the type parameter syntax and when infer_variance=True is passed. Manually created type variables may be explicitly marked covariant or contravariant by passing covariant=True or contravariant=True. By default, manually created type variables are invariant. See PEP 484 and PEP 695 for more details.